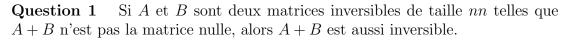
Examen blanc du 21 novembre 2024 - Vrai/Faux



Il suffit de trouver A et B tels que A+B est "presque" la matrice nulle :

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad A + B = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \text{ pas inversible}.$$

Question 2 Soit $\{\vec{b}_1, \dots, \vec{b}_m\}$ une base de \mathbb{R}^m . Si A est une matrice de taille $m \times n$ telle que l'équation $A\vec{x} = \vec{b}_k$ possède au moins une solution pour tout $k = 1, \dots, m$, alors $\text{Im}(A) = \mathbb{R}^m$

Puisque chaque vecteur de la base admet au moins une solution, alors toute combinaison linéaire de ces vecteurs admettra aussi au moins une solution, c'est à dire

$$\forall \vec{v} \in \mathbb{R}^m, \ \exists \vec{x} \in \mathbb{R}^n, \ A\vec{x} = \vec{v}$$

ce qui est équivalent à avoir $\operatorname{Im}(A) = \mathbb{R}^m$.

Question 3 Soit A une matrice de taille $m \times n$ avec m < n. Si la forme échelonnée réduite de A possède exactement k lignes nulles, alors l'ensemble des solutions du système homogène $A\vec{x} = 0$ est un sous-espace vectoriel de \mathbb{R}^n de dimension n - k.

Si la forme échelonnée réduite de A possède k lignes nulles, elle possède alors m-k pivots, donc n-m+k variables libres (colonnes non-pivots), ce qui est la dimension de l'ensemble des solutions du système homogène.

Question 4 Soit A une matrice de taille nn et soit $T: R^n B R^n$ l'application linéaire définie par $T(x) = A\vec{x}$, pour tout $\vec{x} \in \mathbb{R}^n$. Si A est telle que $A^5 = 0$, alors T est surjective.

Faux Vrai

Il suffit de voir que

$$A^5 = 0 \implies 0 = \det(A^5) = \det(A)^5 \implies A \text{ singulière }.$$

La forme échelonnée réduite de A possèdera donc moins de n pivots, donc T n'est ni injective, ni surjective.

Question 5 Soit $W=\{A\in M_{2\times 2}: A=A^T\}$. Alors W est un sous-espace vectoriel de $M_{2\times 2}$ de dimension 3.

Faux Vrai

W est l'ensemble des matrices symétriques de la forme

$$A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$$
, avec $a, b, c \in \mathbb{R}$.

Il est engendré par trois matrices, par exemple

$$\mathcal{B} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

Question 6 Soit q un polynôme de degré 3 quelconque. Alors l'ensemble

$${p \in \mathbb{P}_3(R) : q(0) - p(0) = 0}$$

est un sous-espace vectoriel de $\mathbb{P}_3(R)$.

Vrai Faux

Il suffit de voir que le polynôme nul n'appartient pas à l'ensemble, si le polynôme q choisi est tel que $q(0) \neq 0$.

Question 7 Soit $A \in M_{4\times 4}$ une matrice de rang 3. Si $\vec{u}, \vec{v}, \vec{w}$ sont des vecteurs linéairement indépendants dans \mathbb{R}^4 , alors $A\vec{u}, A\vec{v}, A\vec{w}$ sont linéairement indépendants dans \mathbb{R}^4 .

Contre-exemple:

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \ \vec{u} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \ \vec{v} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \vec{w} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

Les vecteurs sont linéairement indépendants, mais on a $A\vec{w}=0$, qui est linéairement dépendant de tout autre vecteur.

Alternativement, on peut raisonner avec le théorème du rang : le noyau de A est de dimension 4-3=1. Il suffit donc de choisir $\vec{u}, \vec{v} \notin \operatorname{Ker}(A)$ linéairement indépendants et $\vec{w} \in \operatorname{Ker}(A)$.

Question 8 Si $A \in M_{n \times n}$ est une matrice symétrique, alors

$$\det(A - A^T) = \det(A) - \det(A^T).$$

Faux Vrai

Si A est symétrique, alors $A = A^T$. L'égalité est alors trivialement vraie (0 = 0).

Question 9 Soit W le sous-espace vectoriel de $\mathbb{P}_5(R)$ engendré par $p_1, p_2, p_3, p_4 \in \mathbb{P}_5(R)$. Si $\dim(W) = 4$, alors il existe deux polynômes $p_5, p_6 \in \mathbb{P}_5(R)$ tels que la famille $\mathcal{B} = \{p_1, p_2, p_3, p_4, p_5, p_6\}$ est une base de $\mathbb{P}_5(R)$.

Nous savons que $\mathbb{P}_5(R)$ est un espace vectoriel de dimension 6. La donnée nous dit que

$$\begin{cases} W = \operatorname{Span}\{p_1, p_2, p_3, p_4\} \\ \dim(W) = 4 \end{cases} \implies \{p_1, p_2, p_3, p_4\} \text{ est une famille libre.}$$

Il suffit alors de compléter cette famille avec deux autres polynômes $\notin W$ pour avoir une base de $\mathbb{P}_5(R)$.