Série 9

Keywords: Bases, coordinates with respect to a basis, basis changes

Reminder. Let V, W be two vector spaces and a linear map $T: V \to W$.

• The image of T is the set

$$\operatorname{Im}(T) = \{T(\vec{v}) \text{ with } v \in V\} \subset W$$

• The kernel of T is the set

$$\operatorname{Ker}(T) = \{ \vec{v} \in V \text{ such that } T(\vec{v}) = 0_W \} \subset V$$

Question 1 Prove the following propositions:

- a) Im(T) is a subspace of W
- b) Ker(T) is a subspace of V

Question 2 Find a basis for the kernel and the image of the following matrices

$$A = \begin{pmatrix} -1 & 3 \\ -2 & 6 \\ -4 & 12 \\ 3 & -9 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 1 & 2 & 3 & 0 \\ 1 & 2 & 3 & 1 \end{pmatrix}.$$

Question 3

- a) Are the following polynomials in $\mathbb{P}_3(\mathbb{R})$ linearly independent?
 - (i) $p_1(t) = 1 t^2$, $p_2(t) = t^2$, $p_3(t) = t$
 - (ii) $p_1(t) = 1 + t + t^2$, $p_2(t) = t + t^2$, $p_3(t) = t^2$
- b) Do the polynomials p_1 , p_2 , p_3 in (ii) form a basis of \mathbb{P}_3 ? If yes, show that they form a generating set. If not, add one or more polynomials to obtain a basis.

Question 4 Let $a, b, c \in \mathbb{R}$ and a set $\mathcal{F} = \{p, q, r, s\}$ consisting of the four polynomials

$$p(t) = t^2 + t + 1$$
, $q(t) = t^2 + 2t + a$, $r(t) = t^3 + b$, $s(t) = t + c$.

Then

- \mathcal{F} is dependent when $a+c-1 \neq 0$
- \square \mathcal{F} forms a basis of \mathbb{P}_3 for certain values of the parameters a, b, c
- $\Box \mathcal{F}$ is always dependent
- \square \mathcal{F} forms a basis of \mathbb{P}_4 for certain values of the parameters a, b, c

Question 5 Let Tr: $M_{2\times 2}(\mathbb{R}) \to \mathbb{R}$ be the "trace" function defined by

$$\operatorname{Tr}\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = a + d.$$

Among the following sets of matrices, which one forms a basis for Ker(Tr)?

Question 6

- a) Let $W = \operatorname{Span}\{\vec{v_1}, \vec{v_2}, \vec{v_3}\}$ where $\vec{v_1} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\vec{v_2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\vec{v_3} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Find $\dim(W)$.
- b) Find a subset \mathcal{B} of $\{\vec{v_1}, \vec{v_2}, \vec{v_3}\}$ such that \mathcal{B} is a basis of W.
- c) Complete the set $\{\vec{v_1} + \vec{v_2}\} \subset W$ to obtain a basis for W.

Reminder. Let V be a vector space, with bases $\mathcal{B} = \{\vec{b}_1, \dots \vec{b}_n\}$ and $\mathcal{C} = \{\vec{c}_1 \dots \vec{c}_n\}$ of V.

• The coordinates of $\vec{v} \in V$ in the basis \mathcal{B} are the coefficients of the unique

linear combination of \vec{v} in \mathcal{B} , that is

$$[\vec{v}]_{\mathcal{B}} = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \iff \vec{v} = \alpha_1 \vec{b}_1 + \dots + \alpha_n \vec{b}_n.$$

• The change of basis matrix from \mathcal{B} to \mathcal{C} is defined by

$$P_{\mathcal{CB}} = \left([\vec{b}_1]_{\mathcal{C}} \dots [\vec{b}_1]_{\mathcal{C}} \right) (= [\mathcal{B}]_{\mathcal{C}})$$

and satisfies the basis change formula

$$[\vec{v}]_{\mathcal{C}} = P_{\mathcal{C}\mathcal{B}}[\vec{v}]_{\mathcal{B}}.$$

Question 7 Express the coordinates of the vectors \vec{v} with respect to the bases \mathcal{B} and \mathcal{C} and write the change of basis matrix $P_{\mathcal{CB}}$.

a)
$$\vec{v} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
, $\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$, $\mathcal{C} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$

b)
$$\vec{v} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$$
, $\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$, $\mathcal{C} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} \right\}$.

Question 8 Let $C = \vec{c_1}, \vec{c_2}$ and $D = \vec{d_1}, \vec{d_2}$ be bases of \mathbb{R}^2 , where $\vec{c_1}$ and $\vec{c_2}$ are linearly independent and $\vec{d_1} = 6\vec{c_1} - 2\vec{c_2}$ and $\vec{d_2} = 9\vec{c_1} - 4\vec{c_2}$.

- a) Calculate the change of basis matrix $P_{\mathcal{CD}}$ from \mathcal{D} to \mathcal{C} .
- b) Calculate the change of basis matrix $P_{\mathcal{DC}}$ from \mathcal{C} to \mathcal{D} .
- c) For $\vec{x} = -3\vec{c_1} + 2\vec{c_2}$, find $[\vec{x}]\mathcal{C}$ and $[\vec{x}]\mathcal{D}$.

Question 9 Let $p(t) = 2t^2 + t - 3$ and $\mathcal{B} = \{1 + t, t + t^2, -2 + t + t^2\}$ be a basis of \mathbb{P}_2 . Calculate $[p(t)]_{\mathcal{B}}$.

Question 10 Let
$$A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$$
 and $\mathcal{B} = \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ be a basis of $M_{2\times 2}$. Calculate $[A]_{\mathcal{B}}$.

Question 11

a) Calculate the following determinant:

$$\begin{vmatrix} 6 & 0 & 5 & 0 \\ 0 & 0 & 0 & 1 \\ 3 & 2 & 1 & 0 \\ 4 & 3 & 2 & 1 \end{vmatrix}$$

b) Calculate the following determinants:

$$\begin{vmatrix} a & b & a \\ b & a & b \\ a+b & a+b & a+b \end{vmatrix}, \quad \begin{vmatrix} a & b & 0 \\ a & a+b & c \\ a & b & a \end{vmatrix}.$$

c) Let
$$A = \begin{pmatrix} 4 & 3 & 0 & 1 \\ 2 & 1 & 4 & 0 \\ 4 & 18 & 17 & 23 \\ 49 & 1 & 72 & 10 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 1 & 18 & 0 \\ 2 & 0 & 1 & 0 \\ 1 & 0 & \frac{1}{2} & 0 \\ 3 & 4 & 1 & 18 \end{pmatrix}$. Compute $\det(AB)$.

Question 12 Answer the following questions:

- a) How many pivots must a 7×5 matrix have for its columns to be linearly independent?
- b) How many pivots must a 5×7 matrix have for its columns to be linearly independent?
- c) How many pivots must a 5×7 matrix have for its columns to span \mathbb{R}^5 ?
- d) How many pivots must a 5×7 matrix have for its columns to span \mathbb{R}^7 ?

Question 13 Let V and W be two vector spaces, $T: V \to W$ a linear transformation, and $\{\vec{v}_1, \ldots, \vec{v}_k\}$ a subset of V. Prove the following statements:

- a) If $\{\vec{v}_1, \ldots, \vec{v}_k\}$ is linearly dependent (linked), then $\{T(\vec{v}_1), \ldots, T(\vec{v}_k)\}$ is also linearly dependent (linked).
- b) If T is injective and $\{\vec{v}_1, \ldots, \vec{v}_k\}$ is linearly independent (free), then the set $\{T(\vec{v}_1), \ldots, T(\vec{v}_k)\}$ is also linearly independent (free).