Série 8

Keywords: vector spaces, vector subspaces, linear mappings between vector spaces

Reminder. Let V be a vector space equipped with addition + and scalar multiplication \cdot . A subset $W \subset V$ is a **vector subspace of V** if W satisfies the following three properties:

- (1) $W \neq \emptyset$
- (2) $\vec{v} + \vec{w} \in W$, $\forall \vec{v}, \vec{w} \in W$
- (3) $\lambda \cdot \vec{v} \in W$, $\forall \vec{v} \in W$ and $\lambda \in \mathbb{R}$

Question 1 Let V be a vector space equipped with addition + and scalar multiplication \cdot . Prove that a subset $W \subset V$ is a vector subspace if and only if W satisfies the "simplified characterization":

- (1') $0_V \in W$
- (2') $\lambda \cdot \vec{v} + \vec{w} \in W$, $\forall \vec{v}, \vec{w} \in W$ and $\lambda \in \mathbb{R}$.

Question 2 Which of the following sets are vector subspaces of \mathbb{R}^n ?

- a) A solid cube in \mathbb{R}^3 , centered at the origin.
- b) The diagonal $\Delta = \{(x, x, \dots, x) \in \mathbb{R}^n\}.$
- c) A subset that has 2143 elements.
- d) The union of all coordinate axes.
- e) The set of points with integer coordinates.

Question 3 Let $V = \mathbb{F}(\mathbb{R}, \mathbb{R})$ be the vector space of functions $f : \mathbb{R} \to \mathbb{R}$. Which of the following sets are subspaces of V?

- a) $V_1 = \{ f \in V \mid f(0) = f(1) \}.$
- b) $V_2 = \{ f \in V \mid f(x) \ge 0 \text{ for all } x \in \mathbb{R} \}.$
- c) $V_3 = \{ f \in V \mid f \text{ is bijective} \}.$

Question 4 Let \mathbb{P}_n , be the vector space of polynomials with real coefficients of degree less than or equal to n. Which of the following subsets of \mathbb{P}_n are vector subspaces?

- a) The set $V_1 = \{ p \in \mathbb{P}_n \mid p(1) = 0 \}.$
- b) The set V_2 of all polynomials of exact degree n.
- c) The set $V_3 = \{ p \in \mathbb{P}_n \mid p(0) = 0 \}.$

Question 5 Let $M_{n\times n}(\mathbb{R})$, be the vector space of $n\times n$ matrices with real coefficients. Which of the following sets are vector subspaces of $M_{n\times n}(\mathbb{R})$?

- a) The set of upper triangular matrices in $M_{2\times 2}(\mathbb{R})$, i.e., matrices of the form $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ with $a,b,c\in\mathbb{R}$.
- b) The set of matrices of the form $\begin{pmatrix} a & 1 \\ 0 & b \end{pmatrix}$ with $a, b \in \mathbb{R}$.
- c) The set of matrices with trace zero.

 Note: the **trace** of a square matrix is the sum of the entries on its diagonal.
- d) The set of matrices with determinant zero.
- e) The set of matrices A such that $A^4 = -I_n$.

Question 6 Let V be a vector space, and let $\vec{v_1}, \vec{v_2}, \vec{v_3} \in V$. Describe explicitly the subspace $\operatorname{Span}(\vec{v_1}, \vec{v_2}, \vec{v_3})$ generated by $\vec{v_1}, \vec{v_2}, \vec{v_3}$ in the following cases:

a)
$$V = \mathbb{R}^3$$
, $\vec{v_1} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$, $\vec{v_2} = \begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix}$, $\vec{v_3} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$.

b)
$$V = \mathbb{P}_3, \vec{v_1} = t, \vec{v_2} = t^2, \vec{v_3} = t^3.$$

Question 7 We work in $V = \mathbb{P}_3$. Let $p_1(t) = 1 - t$, $p_2(t) = t^3$, $p_3(t) = t^2 - t + 1$. Does the polynomial $q(t) = t^3 - 2t + 1$ belong to $\text{Vect}(p_1, p_2, p_3)$?

Let $n \in \mathbb{N}$ be an integer with $n \geq 1$. For each of the following Question 8 functions, determine and justify whether it is a linear transformation. If so, determine its kernel and image.

- a) The determinant function $\det: M_{n \times n}(\mathbb{R}) \longrightarrow \mathbb{R}$.
- b) The trace function $Tr: M_{n \times n}(\mathbb{R}) \longrightarrow \mathbb{R}$.
- c) The derivative function $D: \mathbb{P}_n \to \mathbb{P}_n$ that maps $p \in \mathbb{P}_n$ to its derivative p'.

Let $\overrightarrow{w} = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$ and $A = \begin{pmatrix} 1 & 3 & -5/2 \\ -3 & -2 & 4 \\ 2 & 4 & -4 \end{pmatrix}$.

Determine whether \overrightarrow{w} is in Im(A), in Ker(A), or in

Question 10

2) Let $V = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$ and $\vec{v_1} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$, $\vec{v_2} = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$. Then

 $\vec{v_1}$ and $\vec{v_2}$ do not span V $\vec{v_2}$ $\vec{v_1}$ $\vec{v_2}$ $\vec{v_2}$ $\vec{v_3}$

3) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by T(x, y, z) = (x - y, y - z). Then

Question 11 Let $V = \mathbb{F}(\mathbb{R}, \mathbb{R})$ be the vector space of real-valued functions of
a real variable, and let $f \in V$. Determine which of the following statements is
true.
☐ If f is the zero vector of V , then $f(t) = 0$ for all $t \in \mathbb{R}$. ☐ If there exists $n \in \mathbb{N}$ such that $f(t) = 0 \forall t \geq n$, then f is the zero vecto of V .
\square If there exists $t \in \mathbb{R}$ such that $f(t) = 0$, then f is the zero vector of V .
If $f(q) = 0$ for all $q \in \mathbb{Q}$, then f is the zero vector of V.