Série 5

Keywords:invertible matrice, linear transform, canonical matrix of a linear transformm

Question 1

- a) Compute the inverse of the following matrix : $A = \begin{pmatrix} 2 & 2 \\ 2 & 4 \end{pmatrix}$
 - (i) by using the general formula of a 2×2 matrix;
 - (ii) by writing the RREF of $(A \mid I_2)$.
- b) Compute the inverse of $A=\begin{pmatrix}1&0&-2\\-3&1&4\\2&-3&4\end{pmatrix}$ by writing the RREF of $(A\mid I_3).$

Question 2

- a) Is $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ invertible? If so, compute the inverse.
- b) Find every solution of the homogeneous system $A\vec{x} = \vec{0}$.
- c) Find every solution of the system $A\vec{x} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

Question 3 For which values of the parameters $a, b, c \in \mathbb{R}$ is the following matrix A invertible?

$$A = \begin{pmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & 1 & c \\ 0 & 0 & c & 1 \end{pmatrix}$$

Whenever possible, give the inverse.

a)	Let A , B , and C be three matrices. Then $(AB)C = (AC)B$.	
	False	True
b)	If A is an invertible matrix, then A^{-1} is also invertible.	
	False	True
c)	The product of several invertible $n \times n$ matrices is not invertible.	
	False	True
d)	If A is an invertible $n \times n$ matrix, then any $\vec{b} \in \mathbb{R}^n$.	the equation $A\vec{x} = \vec{b}$ is consistent for
	False	True

Question 5

a) The matrices are of size $n \times n$.

Let A, B be two invertible matrices, then AB is invertible and $(AB)^{-1} = A^{-1}B^{-1}$.

Let A, B be two invertible matrices, then A + B is invertible.

There exists an invertible matrix A and a non-invertible matrix B such that AB is invertible.

 \square Let A, B be two matrices such that A or B is not invertible. Then AB is not invertible.

b) Let A be an $m \times n$ matrix and B an $n \times p$ matrix.

If m = n and $A = A^T$, then A is diagonal.

Then $(A^{-1})^T = (A^T)^{-1}$ if A is invertible.

Then $(AB)^T = A^T B^T$.

c) Let A, B, C be three $n \times n$ matrices.

If A is invertible and AC = BC, then A = B.

 \square If $C = C^T$ and AC = BC, then A = B.

If C is invertible and AC = BC, then A = B.

 \square If AC = BC, then A = B.

Question 6

We consider the population of a region, divided into rural and urban populations. Let R_n and U_n denote the rural and urban populations in year n. Let a be the annual rate of rural exodus, and b the rate of urban exodus (both are assumed to be constant and given as percentages, so $0 \le a, b \le 1$).

a) Write the equations that give R_{n+1} and U_{n+1} as functions of R_n, U_n, a , and b.

b) Write these equations as a matrix equation $A\begin{pmatrix} R_n \\ U_n \end{pmatrix} = \begin{pmatrix} R_{n+1} \\ U_{n+1} \end{pmatrix}$ where A is a 2×2 matrix.

c) Take the values a = 0.2 and b = 0.1, as well as $R_0 = 100,000 = U_0$. Calculate the rural and urban populations in the third year.

d) Provide a formula for R_n and U_n in terms of R_0 , U_0 , and A^n .

Question 7 Find the associated canonical matrices of the following linear transformations:

a)
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, $T\left(\begin{pmatrix} 1\\0 \end{pmatrix}\right) = \begin{pmatrix} 0\\1 \end{pmatrix}$, $T\left(\begin{pmatrix} 0\\1 \end{pmatrix}\right) = \begin{pmatrix} 1\\0 \end{pmatrix}$

b)
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
, $T\left(\begin{pmatrix} 1\\0 \end{pmatrix}\right) = \begin{pmatrix} 1\\0\\1 \end{pmatrix}$, $T\left(\begin{pmatrix} 0\\1 \end{pmatrix}\right) = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$

c)
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
, $T\left(\begin{pmatrix} 1\\0\\0 \end{pmatrix}\right) = \begin{pmatrix} 1\\1 \end{pmatrix}$, $T\left(\begin{pmatrix} 0\\1\\0 \end{pmatrix}\right) = \begin{pmatrix} 0\\1 \end{pmatrix}$, $T\left(\begin{pmatrix} 0\\1\\1 \end{pmatrix}\right) = \begin{pmatrix} 2\\7 \end{pmatrix}$

Question 8 Consider
$$T_1: \mathbb{R}^2 \to \mathbb{R}^3$$
 defined by $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1 \\ x_2 \\ x_1 \end{pmatrix}$, and

$$T_2: \mathbb{R}^3 \to \mathbb{R}$$
 defined by $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto x_1 + x_2 + x_3.$

- a) Write the associated canonocal matrices of T_1 and T_2 and write the product associated to the composition $T_2 \circ T_1$ such that $T_2 \circ T_1(\vec{x}) = T_2(T_1(\vec{x}))$ for all $\vec{x} \in \mathbb{R}^2$.
- b) What is the domain of definition of $T_2 \circ T_1$? What is the codomain?

Question 9 Calculate the following matrix products, and indicate the corresponding compositions of linear transformations, with the dimensions of the spaces.

$$T_{AB}: \mathbb{R}^{\cdots} \xrightarrow[T_{\cdots}]{} \mathbb{R}^{\cdots} \xrightarrow[T_{\cdots}]{} \mathbb{R}^{\cdots}.$$

a)
$$AB$$
, with $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \end{pmatrix}$.

b)
$$ABC$$
, with $A = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{pmatrix}$.

c)
$$ABC$$
, with $A = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$.

Question 10

- a) In the plane, let S be the axial symmetry with axis x = -y. Describe its inverse if it exists. What are the matrices of these transformations?
- b) Same question for H, the homothety with ratio 3.
- c) Same question for R_{θ} , the rotation by angle θ centered at the origin.