Série 5

Mots-clés: matrices inversibles, transformations linéaires, matrice canonique d'une transformation linéaire

Question 1

- a) Calculer l'inverse de la matrice $A=\left(\begin{array}{cc} 2 & 2 \\ 2 & 4 \end{array} \right)$
 - (i) en utilisant la formule générale de l'inverse d'une matrice 2×2 ;
 - (ii) en mettant la matrice $(A \mid I_2)$ sous forme échelonnée réduite.
- b) Calculer l'inverse de la matrice $A = \begin{pmatrix} 1 & 0 & -2 \\ -3 & 1 & 4 \\ 2 & -3 & 4 \end{pmatrix}$ en mettant la matrice $(A \mid I_3)$ sous forme échelonnée réduite.

Question 2

- a) Est-ce que la matrice $A=\begin{pmatrix}0&1&1\\1&0&1\\1&1&0\end{pmatrix}$ est inversible? Si oui calculer son inverse.
- b) Trouver les solutions du système homogène $A\vec{x} = \vec{0}$.
- c) Trouver les solutions du système $A\vec{x} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

Question 3 Pour quelles valeurs des paramètres a, b, c la matrice A ci-dessous est-elle inversible?

$$A = \begin{pmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & 1 & c \\ 0 & 0 & c & 1 \end{pmatrix}$$

Donner l'inverse de A lorsque cela est possible.

•	ièvement votre réponse.	ionce s'il est vrai ou faux et justifier
a)	Soient A , B et C trois matrices. Alors	(AB)C = (AC)B.
	Faux	Vrai Vrai
b)	Si A est une matrice inversible, alors A	A^{-1} l'est aussi.
	Faux	☐ Vrai
c)	Le produit de plusieurs matrices inversi	ibles de taille $n \times n$ n'est pas inversible.
	Faux	Vrai
d)	Si A est une matrice inversible de tail compatible quel que soit $\vec{b} \in \mathbb{R}^n$.	lle $n \times n$, alors l'équation $A\vec{x} = \vec{b}$ est
	Faux	☐ Vrai

Question 5

a) Les matrices sont de taille $n \times n$.

	Soient A, B	deux	matrices	inversibles,	alors	AB	est	inversible	et		
$(AB)^{-1} = A^{-1}B^{-1}.$											
	7 ~				4	ъ.					

Soient A, B deux matrices inversibles, alors A + B est inversible.

 \square Il existe une matrice A inversible et une matrice B qui ne l'est pas telles que AB est inversible.

 \square Soient A, B deux matrices telles que A ou B n'est pas inversible. Alors AB n'est pas inversible.

b) Soit A une matrice $m \times n$ et B une matrice $n \times p$.

```
\square Si m = n = p, A = A^T et B = B^T, alors (AB)^T = AB.
```

Si m = n et $A = A^T$, alors A est diagonale.

Alors
$$(A^{-1})^T = (A^T)^{-1}$$
 si A est inversible.

c) Soient A, B, C trois matrices $n \times n$.

 \square Si A est inversible et AC = BC, alors A = B.

 \square Si $C = C^T$ et AC = BC, alors A = B.

 \square Si C est inversible et AC = BC, alors A = B.

 \square Si AC = BC, alors A = B.

Question 6

On considère la population d'une région, divisée en population rurale et urbaine. On note R_n et U_n les populations rurales et urbaines à l'année n. On notera par a le taux d'exode rural annuel et par b le taux d'exode urbain (que l'on supposera constants et donnés en % de sorte que $0 \le a, b \le 1$).

a) Écrivez des équations qui donnent R_{n+1} et U_{n+1} en fonction de R_n, U_n, a et b.

b) Écrivez ces équations en une équation matricielle $A \begin{pmatrix} R_n \\ U_n \end{pmatrix} = \begin{pmatrix} R_{n+1} \\ U_{n+1} \end{pmatrix}$ où A est une matrice 2×2 .

c) Prenons les valeurs a = 0.2 et b = 0.1, ainsi que $R_0 = 100'000 = U_0$. Calculez la population rurale et urbaine à la troisième année.

d) Donnez une formule pour R_n et U_n en fonction de R_0 , U_0 et A^n .

Question 7 Trouver les matrices correspondant aux transformations linéaires suivantes (exprimées dans la base canonique) :

a)
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, $T\left(\begin{pmatrix} 1 \\ 0 \end{pmatrix}\right) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $T\left(\begin{pmatrix} 0 \\ 1 \end{pmatrix}\right) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

b)
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
, $T\left(\begin{pmatrix} 1\\0 \end{pmatrix}\right) = \begin{pmatrix} 1\\0\\1 \end{pmatrix}$, $T\left(\begin{pmatrix} 0\\1 \end{pmatrix}\right) = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$

c)
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
, $T\left(\begin{pmatrix} 1\\0\\0 \end{pmatrix}\right) = \begin{pmatrix} 1\\1 \end{pmatrix}$, $T\left(\begin{pmatrix} 0\\1\\0 \end{pmatrix}\right) = \begin{pmatrix} 0\\1 \end{pmatrix}$, $T\left(\begin{pmatrix} 0\\1\\1 \end{pmatrix}\right) = \begin{pmatrix} 2\\7 \end{pmatrix}$

Question 8 Soit
$$T_1: \mathbb{R}^2 \to \mathbb{R}^3$$
 définie par $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1 \\ x_2 \\ x_1 \end{pmatrix}$, et $T_2: \mathbb{R}^3 \to \mathbb{R}$ définie par $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto x_1 + x_2 + x_3$.

- a) Écrire les matrices canoniques associées à T_1 et T_2 et le produit matriciel associé à la composition $T_2 \circ T_1$ telle que $T_2 \circ T_1(\vec{x}) = T_2(T_1(\vec{x}))$ pour tout $\vec{x} \in \mathbb{R}^2$.
- b) Quel est le domaine de définition de $T_2 \circ T_1$? Quel est le domaine d'arrivée?

Question 9 Calculer les produits matriciels suivants, et indiquer les compositions correspondantes de transformations linéaires, avec les dimensions des espaces, $T_{AB}: \mathbb{R}^{\cdots} \to \mathbb{R}^{\cdots} \to \mathbb{R}^{\cdots}$.

a)
$$AB$$
, où $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \end{pmatrix}$.

b)
$$ABC$$
, où $A = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{pmatrix}$.

c)
$$ABC$$
, où $A = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$.

Question 10

- a) Dans le plan, soit S la symétrie axiale d'axe x = -y. Décrire son inverse s'il existe. Quelles sont les matrices de ces applications?
- b) Même question pour H l'homothétie de rapport 3.
- c) Même question pour R_{θ} la rotation d'angle θ centrée en l'origine.