Série 3

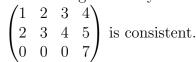
Keywords: Space \mathbb{R}^n , vector equations, linear combinations, linearly (in)dependent sets of vectors.

Question 1

Let's consider the vectors $\vec{a_1} = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$, $\vec{a_2} = \begin{pmatrix} -3 \\ 1 \\ 8 \end{pmatrix}$, and $\vec{b} = \begin{pmatrix} \alpha \\ -5 \\ -3 \end{pmatrix}$. For which value(s) of α is the vector \vec{b} a linear combination of $\vec{a_1}$ and $\vec{a_2}$?

$\alpha = -\frac{7}{2}$
$\alpha = -\frac{3}{2}$ and $\alpha = -\frac{5}{2}$

Question 2


a) Consider the vectors
$$\overrightarrow{v_1} = \begin{pmatrix} 4 \\ 4 \\ 2 \end{pmatrix}$$
, $\overrightarrow{v_2} = \begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix}$, $\overrightarrow{w} = \begin{pmatrix} 3 \\ 10 \\ h \end{pmatrix}$.

- i) For which value(s) of h can the vector \overrightarrow{w} be obtained as a linear combination of $\overrightarrow{v_1}$ and $\overrightarrow{v_2}$?
- ii) In this case, what are the coefficients a_1 , a_2 of the vectors $\overrightarrow{v_1}$ and $\overrightarrow{v_2}$?
- b) Consider the vector $\overrightarrow{v} = \begin{pmatrix} -5 \\ -3 \\ -6 \end{pmatrix}$, and the matrix $A = \begin{pmatrix} 3 & 5 \\ 1 & 1 \\ -2 & -8 \end{pmatrix}$. Is \overrightarrow{v} in the plane of \mathbb{R}^3 spanned by the columns of A? Justify your answer.

Question 3

Indicate for each statement whether it is true or false and briefly justify your answer.

1) The homogeneous system of linear equations represented by the matrix

True False

2) The inhomogeneous system of linear equations represented by the matrix

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 0 & 0 & 0 & 7 \end{pmatrix}$$
 is consistent.

False True

3) If the coefficient matrix of a system of four equations in four unknowns has a pivot in each column, then the system is consistent.

False True

4) If the augmented matrix of a system of four equations in four unknowns has a pivot in each row, then the system is consistent.

False True

5) If \vec{x} is a non-zero solution of $A\vec{x} = \vec{0}$, then none of the components of \vec{x} are zero.

False True

6) If A is an $m \times n$ matrix and $\vec{v}, \vec{w} \in \mathbb{R}^n$ are such that $A\vec{v} = \vec{0} = A\vec{w}$, then $A(\lambda \vec{v} + \mu \vec{w}) = \vec{0}$ for all $\lambda, \mu \in \mathbb{R}$.

True False

Question 4 Are the following sets of vectors independant? Do they span \mathbb{R}^3 (questions a) and b)) or \mathbb{R}^2 (question c))?

a)
$$\vec{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$
, $\vec{v}_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\vec{v}_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$.

b)
$$\vec{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $\vec{v}_2 = \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix}$, $\vec{v}_3 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$.

c)
$$\vec{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\vec{v}_2 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$, $\vec{v}_3 = \begin{pmatrix} 2 \\ 7 \end{pmatrix}$.

Question 5 Consider the vectors

$$\overrightarrow{v_1} = \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix}, \quad \overrightarrow{v_2} = \begin{pmatrix} -2 \\ -6 \\ 4 \end{pmatrix}, \quad \overrightarrow{v_3} = \begin{pmatrix} 1 \\ 2 \\ h \end{pmatrix}$$

- \square For all $h \in \mathbb{R}$, the vector $\overrightarrow{v_2}$ is linearly dependent on the vectors $\overrightarrow{v_1}$ and $\overrightarrow{v_3}$.
- \square The vector $\overrightarrow{v_3}$ is linearly dependent on the vectors $\overrightarrow{v_1}$ and $\overrightarrow{v_2}$ for h=2.
- The set $\{\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}\}$ is linearly independent for h = -2.
- The set $\{\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}\}$ is linearly independent for $h \neq -2$.

Question 6 Let $h \in \mathbb{R}$ and consider the vectors

$$\vec{v_1} = \begin{pmatrix} 3\\2\\4\\7 \end{pmatrix}$$
 $\vec{v_2} = \begin{pmatrix} 1\\2\\-10\\1 \end{pmatrix}$ et $\vec{v_3} = \begin{pmatrix} h+7\\8\\2h+1\\25 \end{pmatrix}$.

Thus $\vec{v_3}$ is a linear combinaison of $\vec{v_1}$ and $\vec{v_2}$ when

Question 7 Let $b \in \mathbb{R}$. Thus the vectors

$$\vec{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \qquad \vec{v}_2 = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}, \qquad \vec{v}_3 = \begin{pmatrix} 1 \\ b \\ 0 \end{pmatrix}$$

are linearly independent if

Question 8

Consider the linear system:

$$\begin{cases} x_1 + 3x_2 - 5x_3 = 4 \\ x_1 + 4x_2 - 8x_3 = 7 \\ -3x_1 - 7x_2 + 9x_3 = -6 \end{cases}$$

- i) Write the system in matrix form $A\vec{x} = \vec{b}$.
- ii) Write the system as a linear combination of the columns of the matrix A.
- iii) Find the set of solutions to the equation $A\vec{x} = \vec{b}$.