Série 14

Mots-clés: Décomposition en valeurs singulières.

Rappel: valeurs singulières.

Les valeurs singulières de $A \in M_{m \times n}$ sont définies par $\sigma_i = \sqrt{\lambda_i}$ où λ_i sont les valeurs propres (toujours positives) de $A^T A$. On a toujours

 $\sigma_i = ||A\vec{v}_i||$, où \vec{v}_i est un vecteur propre unitaire de $A^T A$.

Rappel: décomposition en valeurs singulières.

Une matrice $A \in M_{m \times n}$ de rang k peut toujours s'écrire $A = U \Sigma V^T$ avec

• $\Sigma \in M_{m \times n}$ est la matrice des valeurs singulières de A:

$$\Sigma = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} \in M_{m \times n}, \quad \text{avec} \quad D = \begin{pmatrix} \sigma_1 & 0 \\ & \ddots & \\ 0 & & \sigma_k \end{pmatrix}, \quad \sigma_1 \ge \cdots \ge \sigma_k > 0,$$

où σ_i sont les valeurs singulières **non-nulles** de A.

- $V = (\vec{v}_1 \dots \vec{v}_n) \in M_{n \times n}$ est la matrice **orthogonale** des vecteurs propres de $A^T A$, classées selon **l'ordre décroissant de ses valeurs propres**.
- $U = (A\vec{v}_1 \dots A\vec{v}_k \ \vec{u}_{k+1} \dots \vec{u}_m) \in M_{m \times m}$ est la matrice **orthogonale** de l'image des vecteurs propres de $A^T A$, complétée, si nécessaire (quand k < m), en une base de \mathbb{R}^m par des vecteurs unitaires.

Question 1 Soit A une matrice de taille $m \times n$.

- a) Montrer que $Ker A = Ker(A^T A)$.
- b) Montrer que A^TA est inversible si et seulement si les colonnes de A sont linéairement indépendantes.

Question 2 Trouver une décomposition en valeurs singulières des matrices

$$A = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} -3 & 1 \\ 6 & -2 \\ 6 & -2 \end{pmatrix} \quad C = \begin{pmatrix} 2 & 0 \\ 1 & 1 \\ -1 & 1 \end{pmatrix}.$$

Question 3 Soit A une matrice et soient $\vec{w_1}, \vec{w_2}$ deux vecteurs propres de la matrice $A^T A$, tels que

$$\vec{w}_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}, \ \vec{w}_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \ A\vec{w}_1 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \ A\vec{w}_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

Utiliser ces informations afin de trouver des matrices U, Σ et V telles que A possède une décomposition en valeurs singulières de la forme

$$A = U\Sigma V^T.$$

Démarche proposée :

- d'abord déduisez le tailles des matrices A, U, Σ et V;
- normalisez les vecteurs \vec{w}_1 et \vec{w}_2 , on obtient \vec{v}_1 et \vec{v}_2 ;
- calculez $A\vec{v}_1$ et $A\vec{v}_2$;
- calculez les valeurs singulières et définissez Σ ;
- complétez \vec{v}_1 et \vec{v}_2 en une base de \mathbb{R}^4 et assurez-vous d'obtenir une base orthonormée en utilisant la méthode du complément orthogonal;
- définissez V en utilisant $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4$;
- normalisez $A\vec{v}_1$ et $A\vec{v}_2$ et utilisez-les pour définir U.