Série 13

Mots-clés: Algorithme de Gram-Schmidt, Méthode des moindres carrés, matrices orthogonales, matrices symétriques.

Rappel:

• Soit base $\{\vec{b}_1, \dots, \vec{b}_k\}$ d'un sous-espace $W \subset \mathbb{R}^n$. Alors on peut construire une base orthogonale $\{\vec{c}_1, \dots, \vec{c}_k\}$ de W de la manière suivante :

$$- \vec{c}_{1} \stackrel{\text{def}}{=} \vec{b}_{1}, \qquad W_{1} \stackrel{\text{def}}{=} \operatorname{Span}\{\vec{c}_{1}\},$$

$$- \vec{c}_{2} \stackrel{\text{def}}{=} \vec{b}_{2} - \operatorname{Proj}_{W_{1}}(\vec{b}_{2}), \qquad W_{2} \stackrel{\text{def}}{=} \operatorname{Span}\{\vec{c}_{1}, \vec{c}_{2}\},$$

$$- \vec{c}_{3} \stackrel{\text{def}}{=} \vec{b}_{3} - \operatorname{Proj}_{W_{2}}(\vec{b}_{3}), \qquad W_{3} \stackrel{\text{def}}{=} \operatorname{Span}\{\vec{c}_{1}, \vec{c}_{2}, \vec{c}_{3}\},$$

$$\vdots$$

$$- \vec{c}_{i} \stackrel{\text{def}}{=} \vec{b}_{i} - \operatorname{Proj}_{W_{i-1}}(\vec{b}_{i}), \qquad W_{i} \stackrel{\text{def}}{=} \operatorname{Span}\{\vec{c}_{1}, \vec{c}_{2}, \dots, \vec{c}_{i}\},$$

$$\vdots$$

$$- \vec{c}_{k} \stackrel{\text{def}}{=} \vec{b}_{k} - \operatorname{Proj}_{W_{k-1}}(\vec{b}_{k}).$$

$$A^T A \hat{x} = A^T \vec{b}.$$

Sa solution minimise $||A\vec{x} - \vec{b}||$.

Question 1 Appliquer la méthode de Gram-Schmidt pour orthogonaliser les bases des sous-espaces vectoriels $W \subseteq \mathbb{R}^n$ suivants.

a)
$$W = \text{Span}\{w_1, w_2\}$$
, avec $w_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $w_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$.

b)
$$W = \text{Span}\{w_1, w_2, w_3\}$$
, avec $w_1 = \begin{pmatrix} 1 \\ 3 \\ 2 \\ 1 \end{pmatrix}$, $w_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}$, $w_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$.

c) Donner une base orthonormale pour a) et b).

Question 2 Déterminer la solution au sens des moindres carrés du système incompatible $A\vec{x} = \vec{b}$.

a)
$$A = \begin{pmatrix} 2 & 1 \\ -2 & 0 \\ 2 & 3 \end{pmatrix}$$
, $b = \begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix}$,

b)
$$A = \begin{pmatrix} 1 & 3 \\ 1 & -1 \\ 1 & 1 \end{pmatrix}, b = \begin{pmatrix} 5 \\ 1 \\ 0 \end{pmatrix},$$

c)
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \\ -1 & 1 & -1 \end{pmatrix}, b = \begin{pmatrix} 2 \\ 5 \\ 6 \\ 6 \end{pmatrix};$$

Question 3

On considère les points

x_i	2	5	6	8
y_i	1	2	3	3

Calculer la droite de régression approchant au mieux ces points.

Rappel:

- Une matrice $Q \in M_{n \times n}$ est **orthogonale** si $Q^T Q = I_n$.
- Une matrice $A \in M_{n \times n}$ est **symétrique** si $A^T = A$.
- Théorème spectral : $A \in M_{n \times n}$ est symétrique si et seulement si elle est diagonalisable en base orthonormale, c'est à dire qu'on peut écrire

$$A = PDP^T$$
, avec $D \in M_{n \times n}$ diagonale, $P \in M_{n \times n}$ orthogonale.

Question 4

- a) Montrer que si Q est une matrice orthogonale, alors Q^T est aussi une matrice orthogonale.
- b) Montrer que si U, V sont des matrices $n \times n$ orthogonales, alors UV est aussi une matrice orthogonale.
- c) Montrer que si Q est une matrice orthogonale et $\vec{x} \in \mathbb{R}^n$, alors $||Q\vec{x}|| = ||\vec{x}||$.
- d) Montrer que toute valeur propre réelle λ d'une matrice orthogonale Q vérifie $\lambda = \pm 1$.
- e) Soit Q une matrice orthogonale de taille $n \times n$. Soit $\{u_1, \ldots, u_n\}$ une base orthogonale de \mathbb{R}^n . Montrer que $\{Qu_1, \ldots, Qu_n\}$ est aussi une base orthogonale de \mathbb{R}^n .

Question 5 Soit A une matrice symétrique de taille $n \times n$.

- a) Montrer que $(Av) \cdot u = v \cdot (Au)$ pour tous $u, v \in \mathbb{R}^n$.
- b) Donner une matrice B de taille 2×2 telle que $(Bv) \cdot u \neq v \cdot (Bu)$ pour certains $u, v \in \mathbb{R}^2$.
- c) Montrer que si A est inversible, alors l'inverse de A est aussi symétrique.

Question 6 Soit $A \in M_{n \times n}$.

- a) Si $A^2 = 3I_n$, déterminer les seules valeurs propres réelles possibles de A.
- b) Si $A^2 + 2A + I_n = 0$, montrer que -1 est une valeur propre de A.

Question 7

Diagonaliser les matrices suivantes sous la forme $P^TAP = D$, avec P une matrice orthogonale.

a)
$$A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & 1 \\ 3 & 1 & 1 \end{pmatrix}$$
, b) $A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Question 8

Les données suivantes décrivent le potentiel dans un câble électrique en fonction de la température du câble.

i	T_i [°C]	U_i $[V]$	
1	0	-2	
2	5	-1	
3	10	0	
4	15	1	
5	20	2	
6	25	4	

On suppose que le potentiel suit la loi $U=a+bT+cT^2$. Calculer a,b,c au sens des moindres carrés.