Série 11

Mots-clés: Valeurs propres, vecteurs propres, espaces propres, diagonalisation.

Rappel: Soit $A \in M_{n \times n}$.

• Un scalaire $\lambda \in \mathbb{R}$ est une valeur propre de A et un vecteur $\vec{v} \in \mathbb{R}^n$, $\vec{v} \neq \vec{0}$ est un vecteur propre associé à λ si

$$A\vec{v} = \lambda \vec{v}$$
.

• Les valeurs propres sont les racines du polynôme caractéristique

$$P_A(\lambda) = \det(A - \lambda I_n).$$

• L'espace propre associé à une valeur propre λ est le sous-espace vectoriel

$$E_{\lambda} = \operatorname{Ker}(A - \lambda I_n) = \{ \vec{v} \in \mathbb{R}^n : A\vec{v} = \lambda \vec{v} \}.$$

ullet A est diagonalisable si et seulement si elle admet n vecteurs propres linéairement indépendants. On peut alors écrire

$$A = PDP^{-1}$$
 avec $P = (\vec{v}_1 \dots \vec{v}_n), D = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots \\ 0 & \lambda_n \end{pmatrix}$

où λ_i est une valeur propre et \vec{v}_i est un vecteur propre associé.

Question 1 Soit $A = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$. Calculer les valeurs propres et espaces propres de A.

Question 2

On considère la matrice $A = \begin{pmatrix} -15 & 1 & -9 \\ 0 & 6 & 0 \\ 4 & 1 & 3 \end{pmatrix}$.

a) Est-ce que $\lambda=6$ est une valeur propre de A?

b) Est-ce que $\lambda = 1$ et $\lambda = -9$ sont des valeurs propres de A?

Question 3

Soit A la matrice $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$. Montrer que 0 est une valeur propre de A et calculer l'espace propre associé..

Question 4 Soit A de taille 3×3 inversible et λ une valeur propre de A.

Alors λ est une valeur propre de A^{-1} .

Alors λ est une valeur propre de -A.

Alors λ^{-1} est une valeur propre de A^{-1} .

Alors λ^{-1} est une valeur propre de -A.

Question 5

Soit A une matrice de taille 2×2 qui n'est pas inversible. Alors

	tout	vecteur	de	\mathbb{R}^2	est	un	vecteur	propre	de A.
--	------	---------	----	----------------	-----	----	---------	--------	-------

 \square A n'a pas de valeur propre réelle. \square 0 est une valeur propre de A.

0 6	est	une	valeur	propre	de	1

 \square A est la matrice nulle.

Question 6

Soit A une matrice de taille $n \times n$ et $k \geq 2$ un entier. Vérifier que si λ est une valeur propre de A avec pour vecteur propre \vec{v} , alors λ^k est une valeur propre de

$$A^k = \underbrace{A A \cdots A}_{k \text{ fois}}$$

avec pour vecteur propre \vec{v} .

Question 7

Soient $n \geq 2$ et $k \geq 2$ entiers.

a) Il existe une matrice diagonale qui n'est pas diagonalisable.

VRAI FAUX

b) La matrice $n \times n$ nulle est diagonalisable.

VRAI FAUX

c) Toute matrice triangulaire supérieure est diagonalisable.

VRAI FAUX

d) Si A est une matrice $n \times n$ diagonalisable, alors A^k est diagonalisable.

VRAI FAUX

e) Si A est une matrice $n \times n$ et A^k est diagonalisable, alors A est diagonalisable.

VRAI FAUX

Question 8

Soient

$$A = \begin{pmatrix} 1 & -1 \\ -4 & 1 \end{pmatrix}, \quad P = \begin{pmatrix} 1 & 1 \\ -2 & 2 \end{pmatrix}, \quad D = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix}.$$

- a) Montrer que $A=PDP^{-1}$ et en déduire les valeurs propres et espaces propres de A.
- b) Donner une expression pour A^n .

Question 9 Soit $A = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}$.

- a) Calculer les valeurs propres et espaces propres de A.
- b) Donner une expression de A^k .

Question 10

Pour les matrices suivantes, calculer les valeurs propres et espaces propres, et déterminer celles qui sont diagonalisables:

$$A = \begin{pmatrix} 4 & 1 \\ -1 & 1 \end{pmatrix}, B = \begin{pmatrix} 4 & 2 \\ 0 & 4 \end{pmatrix},$$

$$C = \begin{pmatrix} 4 & 0 & 0 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix}, D = \begin{pmatrix} -1 & 5 & 2 \\ 5 & -1 & 2 \\ 2 & 2 & 2 \end{pmatrix}.$$

Question 11 Soit A une matrice de taille $n \times n$. Indiquer si les affirmations suivantes sont vraies ou fausses (justifier).

a) A est diagonalisable si et seulement si elle possède n valeurs propres distinctes.

ĺ	VRAI	FAUX
	VKAI	FAUA

b) Si A est diagonalisable, alors A est inversible.

c) Si A est inversible, alors A est diagonalisable.

d) Si 0 est valeur propre, alors rg(A) < n.

Question 12

Soit
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
.

- a) Trouver les valeurs propres et les espaces propres de ${\cal A}$
- b) Montrer que A est diagonalisable et donner une formule pour A^k , pour tout $k \in \mathbb{N}$.

Question 13 Soient $A, P \in M_{n \times n}$ avec P inversible et $\lambda \in \mathbb{R}$. Démontrer que λ est une valeur propre de A si et seulement si λ est une valeur propre de $P^{-1}AP$.

Indication : simplifier $P^{-1}(\lambda I_n)P$ et travailler $\det(P^{-1}AP - \lambda I_n)$

 \mathbf{NB} : on dit que A et $B=P^{-1}AP$ sont des **matrices semblables**