Série 12

Mots-clés: Produit scalaire, norme, orthogonalité, complément orthogonal, projection orthogonale.

Rappel: Soient $\vec{v} = (v_1, \dots v_n), \vec{w} = (w_1, \dots w_n) \in \mathbb{R}^n$ et $W \subset \mathbb{R}^n$ un sousespace vectoriel

• Le produit scalaire de \vec{v} et \vec{w} est

$$\vec{v} \cdot \vec{w} = v_1 w_1 + \dots + v_n w_n.$$

• La **norme** de \vec{v} est

$$||\vec{v}|| = \sqrt{\vec{v} \cdot \vec{v}} = \sqrt{v_1^2 + \dots + v_n^2}.$$

- \vec{v} et \vec{w} sont **orthogonaux** si $\vec{v} \cdot \vec{w} = 0$.
- Le complément orthogonal de W est l'ensemble

$$W^{\perp} = \{ \vec{v} \in \mathbb{R}^n : \vec{v} \cdot \vec{w} = 0, \ \forall \vec{w} \in W \}.$$

• Si $A \in M_{m \times n}$, alors $\operatorname{Im}(A)^{\perp} = \operatorname{Ker}(A^T)$.

Question 1 Démontrer que si W est un s.e.v de \mathbb{R}^n , alors W^{\perp} est aussi un s.e.v de \mathbb{R}^n .

Question 2

a) Soient
$$\vec{u} = \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix}$$
, $\vec{v} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$, $\vec{w} = \begin{pmatrix} 5 \\ 6 \\ 0 \end{pmatrix}$. Calculer
$$\vec{u} \cdot \vec{v}, \quad \vec{v} \cdot \vec{w}, \quad \frac{\vec{u} \cdot \vec{w}}{\|\vec{v}\|}, \quad \frac{1}{\vec{w} \cdot \vec{w}} \vec{w}, \quad \frac{\vec{u} \cdot \vec{w}}{\|\vec{v}\|} \vec{v}.$$

- b) Calculer la distance entre \vec{u} et \vec{v} et la distance entre \vec{u} et \vec{v} .
- c) Calculer les vecteurs unitaires correspondant à $\vec{u}, \vec{v}, \vec{w}$ (pointant dans la même direction que le vecteur original).

Question 3 Soient $u, v \in \mathbb{R}^n$ tels que ||u|| = 2, ||v|| = 3 et $u \cdot v = 5$.

- a) Calculer le produit scalaire de u 2v et 3u + v.
- b) Calculer le produit scalaire de au + bv et bu + av où $a, b \in \mathbb{R}$.
- c) Trouver toutes les valeurs des paramètres a et b telles que les vecteurs au + bv et bu + av soient orthogonaux.

Question 4 Pour tous les sous-espaces suivants, donner une base du complément orthogonal :

$$W_1 = \operatorname{Span}\left\{ \begin{pmatrix} 3\\2\\1 \end{pmatrix} \right\}, \quad W_2 = \operatorname{Span}\left\{ \begin{pmatrix} 1\\2\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\0 \end{pmatrix} \right\},$$

$$W_3 = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}, \quad W_4 = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ -2 \\ 1 \end{pmatrix} \right\}.$$

Question 5 Soit
$$A = \begin{pmatrix} 1 & -1 & 1 \\ -2 & 2 & 3 \\ -1 & 1 & 4 \end{pmatrix}$$
 et $U = \operatorname{Ker}(A)$. Alors U^{\perp} est égal à

$$\square$$
 Im(A^T) \square Ker(A) \square Im(A) \square \mathbb{R}^3

Rappel:

• Une famille/base de vecteurs $\{\vec{v}_1,\ldots,\vec{v}_k\}$ est **orthogonale** si

$$\vec{v}_i \cdot \vec{v}_j = 0, \ \forall i \neq j.$$

Elle est **orthonormale** si, de plus, $||\vec{v}_i|| = 1$, $\forall i$.

• La projection orthogonale de $\vec{v} \in \mathbb{R}^n$ sur un sous-espace $W \subset \mathbb{R}^n$ est le vecteur $\operatorname{proj}_W(v) \in \mathbb{R}^n$ satiafaisant

$$\operatorname{proj}_W(\vec{v}) \in W \quad \text{et} \quad \vec{v} - \operatorname{proj}_W(\vec{v}) \in W^{\perp}.$$

• Si $\{\vec{u}_1,\ldots,\vec{u}_k\}$ est une base orthogonale de W, alors on a la formule

$$\operatorname{proj}_{W}(\vec{v}) = \frac{\vec{v} \cdot \vec{u}_{1}}{||\vec{u}_{1}||^{2}} \vec{u}_{1} + \dots + \frac{\vec{v} \cdot \vec{u}_{k}}{||\vec{u}_{k}||^{2}} \vec{u}_{k}.$$

Question 6 Soient
$$u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $u_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $v = \begin{pmatrix} 3 \\ 0 \\ 3 \end{pmatrix} \in \mathbb{R}^3$.

a) Les vecteurs u_1 et u_2 sont orthogonaux.

VRAI FAUX

b) Soit $W = \text{Span}\{u_1, u_2\}$. Calculer $\text{proj}_W(v)$.

 $\square \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \qquad \square \begin{pmatrix} 7/4 \\ 1/4 \\ 1 \end{pmatrix} \qquad \square \begin{pmatrix} 7/2 \\ 1/2 \\ 2 \end{pmatrix} \qquad \square \begin{pmatrix} 7 \\ 1 \\ 4 \end{pmatrix}$

c) Calculer $v - \operatorname{proj}_W(v)$.

 $\square \begin{pmatrix} 1/2 \\ 1/2 \\ -1 \end{pmatrix} \qquad \square \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix} \qquad \square \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} \qquad \square \begin{pmatrix} -1/2 \\ -1/2 \\ 1 \end{pmatrix}$

Question 7 Soient les vecteurs $v = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$, $w_1 = \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix}$, $w_2 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$. Calculer $\operatorname{proj}_W(v)$, avec $W = \operatorname{Span}\{w_1, w_2\}$.

 $\square \begin{pmatrix} 4 \\ 1 \\ 5 \end{pmatrix} \qquad \square \begin{pmatrix} -4/3 \\ -1/3 \\ -5/3 \end{pmatrix} \qquad \square \begin{pmatrix} 2/3 \\ 1/3 \\ 5/3 \end{pmatrix} \qquad \square \begin{pmatrix} 4/3 \\ 1/3 \\ 5/3 \end{pmatrix}$

Question 8 Considérons les vecteurs de \mathbb{R}^4 suivants

$$v = \begin{pmatrix} 2\\4\\0\\-1 \end{pmatrix}, \quad w_1 = \begin{pmatrix} 2\\0\\-1\\-3 \end{pmatrix}, \quad w_2 = \begin{pmatrix} 5\\-2\\4\\2 \end{pmatrix}$$

et $W = \operatorname{Span}\{w_1, w_2\}.$

- a) Calculer $\operatorname{proj}_W(v)$
- b) Calculer la distance entre v et W.

Soient $\{u_1, \ldots, u_n\}$ et $\{v_1, \ldots, v_n\}$ deux bases orthonormales de Question 9 \mathbb{R}^n . On définit les matrices

$$U = (u_1 \ldots u_n), \ V = (v_1 \ldots v_n) \in M_{n \times n}.$$

Montrer que $U^TU=I_n,\,V^TV=I_n$ et que UV est inversible.

N.B. Une matrice $U \in M_{n \times n}$ est dite **orthogonale** si $U^T U = I_n$.

Question 10 Soit
$$A = \begin{pmatrix} \sqrt{2} & -\sqrt{3} & 1 \\ \sqrt{2} & \sqrt{3} & 1 \\ \sqrt{2} & 0 & -2 \end{pmatrix}$$
. Alors

- A n'est pas inversible

 $\frac{A}{\sqrt{6}}$ est orthogonale

Question 11 Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.	
a)	Une base d'un sous-espace vectoriel W de \mathbb{R}^n qui est un ensemble de vecteurs orthogonaux est une base orthonormale.
	☐ VRAI ☐ FAUX
b)	Un ensemble $S=\{v_1,v_2,\dots,v_p\}$ orthogonal de vecteurs non nuls de \mathbb{R}^n est linéairement indépendant et de ce fait est une base du sous-espace qu'il engendre.
	☐ VRAI ☐ FAUX
c)	Une base orthonormale est une base orthogonale mais la réciproque est fausse en général.
	☐ VRAI ☐ FAUX
d)	Si x n'appartient pas au sous-espace vectoriel $W,$ alors $x-\mathrm{proj}_W(x)$ n'est pas nul.
	☐ VRAI ☐ FAUX
e)	Tout ensemble orthonormal de \mathbb{R}^n est linéairement dépendant.
	☐ VRAI ☐ FAUX
f)	Soit W un sous-espace vectoriel de \mathbb{R}^n . Si v est dans W et dans W^{\perp} , alors $v=0$.
	☐ VRAI ☐ FAUX

Question 12

Pour tout $\vec{u}, \vec{v} \in \mathbb{R}^n$, montrer les proporsition suivantes :

- a) Si $\{\vec{u}, \vec{v}\}$ est une famille orthonormale, alors $||\vec{u} \vec{v}|| = \sqrt{2}$.
- b) $\vec{u} \cdot \vec{v} = \frac{1}{4} (\|\vec{u} + \vec{v}\|^2 \|\vec{u} \vec{v}\|^2)$
- c) $\|\vec{u} + \vec{v}\|^2 + \|\vec{u} \vec{v}\|^2 = 2(\|\vec{u}\|^2 + \|\vec{v}\|^2)$
- d) Le théorème de Pythagore : si \vec{u}, \vec{v} sont orthogonaux, alors

$$\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2.$$