Série 9

Mots-clés: Bases, coordonnées selon une base, changements de bases

Rappel. Soit V, W deux espaces vectoriels et une application linéaire $T: V \to W$.

 \bullet L'image de T est l'ensemble

$$\operatorname{Im}(T) = \{T(\vec{v}) \text{ avec } v \in V\} \subset W$$

 \bullet Le noyau de T est l'ensemble

$$\operatorname{Ker}(T) = \{ \vec{v} \in V \text{ tels que } T(\vec{v}) = 0_W \} \subset V$$

Question 1 Démontrer les proposition suivantes :

- a) Im(T) est un sous-espace vectoriel de W
- b) Ker(T) est un sous-espace vectoriel de V

Solution: Puisque $T(0_v) = 0_W$, alors les deux ensembles contiennent l'élément neutre. Il faut montrer qu'ils sont stables par combinaisons linéaires (propriété (1') de la caractérisation simplifiée).

a) Soient $\vec{b}_1, \vec{b}_2 \in \text{Im}(T)$ et $\lambda \in \mathbb{R}$. Alors il existe $\vec{v}_1, \vec{v}_2 \in V$ tels que $T(\vec{v}_1) = \vec{b}_1$ et $T(\vec{v}_2) = \vec{b}_2$. On a donc

$$\lambda \vec{b}_1 + \vec{b}_2 = \lambda T(\vec{v}_1) + T(\vec{v}_2) = T(\lambda \vec{v}_1 + \vec{v}_2),$$

où on a utilisé la linéarité de T. Ainsi,

$$\lambda \vec{b}_1 + \vec{b}_2 \in \operatorname{Im}(T).$$

b) Soient $\vec{v}_1, \vec{v}_2 \in \text{Ker}(T)$ et $\lambda \in \mathbb{R}$. Alors

$$T(\lambda \vec{v}_1 + \vec{v}_2) = \lambda T(\vec{v}_1) + T(\vec{v}_2) = \lambda 0_W + 0_W = 0_W.$$

D'où

$$\lambda \vec{v}_1 + \vec{v}_2 \in \text{Ker}(T)$$
.

Question 2 Trouver une base pour le noyau et l'images des matrices suivantes

$$A = \begin{pmatrix} -1 & 3 \\ -2 & 6 \\ -4 & 12 \\ 3 & -9 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 1 & 2 & 3 & 0 \\ 1 & 2 & 3 & 1 \end{pmatrix}.$$

Solution:

a) Nous observons que les deux colonnes de A sont linéairement dépendantes $(L_2 = -3L_1)$. Ainsi, seule la première colonne suffit à engendrer l'image de A et donc

$$Im(A) = Span\{(1, 2, 4, -3)\}.$$

Egalement, les quatre lignes sont proportionnelles. L'équation matricielle est constituée de 3 équations redondantes, et donc

$$A\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Longrightarrow \quad -x_1 + 3x_2 = 0,$$

ce qui correspond à une droite dans \mathbb{R}^2 . Elle est engendré par n'importe lequel de ses vecteur, disons (3,1) et donc

$$\operatorname{Ker}(A) = \operatorname{Span}\left\{ \begin{pmatrix} 3\\1 \end{pmatrix} \right\}.$$

Nous pouvons obtenir ces mêmes conclusions en considérant la forme échelonnée réduite de A

$$\begin{pmatrix} 1 & -3 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

La présence d'un unique pivot indique que l'image n'est engendrée que par la première colonne de A, et la ligne non-nulle donne l'équation à résoudre pour trouver le noyau.

b) La forme échelonnée réduite de B est

$$\begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Elle contient deux pivots, qui correspondent aux deux colonnes engendrant l'image de B :

$$\operatorname{Im}(B) = \operatorname{Span}\left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix} \right\}.$$

Le noyau est constitué des solutions de l'équation

$$B\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

La forme échelonnée réduite donne les équations

$$\begin{cases} x_1 = -2x_2 - 3x_3 \\ x_4 = 0 \end{cases} \Longrightarrow \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \alpha \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} -3 \\ 0 \\ 1 \\ 0 \end{pmatrix}.$$

Donc

$$\operatorname{Ker}(B) = \operatorname{Span} \left\{ \begin{pmatrix} -2\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} -3\\0\\1\\0 \end{pmatrix} \right\}.$$

Question 3

a) Les polynômes de $\mathbb{P}_3(\mathbb{R})$ suivants sont-ils linéairement indépendants ?

(i)
$$p_1(t) = 1 - t^2$$
, $p_2(t) = t^2$, $p_3(t) = t$

(ii)
$$p_1(t) = 1 + t + t^2$$
, $p_2(t) = t + t^2$, $p_3(t) = t^2$,

b) Les polynômes p_1 , p_2 , p_3 de (ii) forment-ils une base de \mathbb{P}_3 ? Si oui, monter qu'ils forment une famille génératrice. Si non, compléter avec un ou plusieurs polynôme de sorte à obtenir une base.

Solution:

a) i) Oui. En effet, $x_1p_1(t) + x_2p_2(t) + x_3p_3(t) = x_1(1-t^2) + x_2t^2 + x_3t = t^2(x_2-x_1) + x_3t + x_1 = 0$ pour tout $t \in \mathbb{R}$ ssi

$$\begin{cases} x_2 - x_1 = 0 \\ x_3 = 0 \\ x_1 = 0, \end{cases}$$

i.e. $x_1 = x_2 = x_3 = 0$.

ii) Oui. En effet, $x_1(1+t+t^2)+x_2(t+t^2)+x_3t^2=0$ pour tout $t\in\mathbb{R}$ ssi

$$\begin{cases} x_1 = 0 \\ x_1 + x_2 = 0 \\ x_1 + x_2 + x_3 = 0, \end{cases}$$

et donc $x_1 = x_2 = x_3 = 0$.

b) Non, aucun des trois polynômes ne permet d'engendrer un polynôme de degré égal à 3. Par exemple t^3 n'est pas une combinaison linéaire de p_1, p_2 et p_3 . On peut aussi argumenter par le fait que \mathbb{P}^3 est un espace de dimension 4, donc il manque nécessairement un vecteur pour former une base. On peut compléter la famille en ajoutant par exemple $p_4(t) = t^3$.

Question 4 Soient $a, b, c \in \mathbb{R}$ et une famille $\mathcal{F} = \{p, q, r, s\}$ consituée des quatre polynômes

$$p(t) = t^2 + t + 1$$
, $q(t) = t^2 + 2t + a$, $r(t) = t^3 + b$, $s(t) = t + c$.

Alors

 \mathcal{F} est liée lorsque $a+c-1\neq 0$ \mathcal{F} forme une base de \mathbb{P}_3 pour certaines valeurs des paramètres a,b,c \mathcal{F} est toujours liée \mathcal{F} forme une base de \mathbb{P}_4 pour certaines valeurs des paramètres a,b,c

Solution: Les polynômes étant de degré 3, ils ne peuvent pas former de base de \mathbb{P}_4 , ce qui élimine la dernière réponse. Pour étudier la dépendance linéaire entre les polynômes, on aimerait donc savoir quelle(s) combinaison(s) linéaire(s) $\alpha p + \beta q + \gamma r + \delta s$ donne le polynôme nul, ce qui correspond au système d'équation

$$\begin{cases} \gamma = 0 \\ \alpha + \beta = 0 \\ \alpha + 2\beta + \delta = 0 \\ \alpha + a\beta + b\gamma + c\delta = 0. \end{cases}$$

Le nombre de solutions de ce système dépend des valeurs des paramètres. Lorsque a-1=c, il y a une infinité de solutions, la famille de polynômes n'est donc pas libre. Mais, dans tous les autres cas, lorsque $a-1\neq c$, la seule solution est $\alpha=\beta=\gamma=\delta=0$ et la famille forme donc une base de \mathbb{P}_3 .

Question 5 Soit Tr: $M_{2\times 2}(\mathbb{R}) \to \mathbb{R}$ l'application "trace" définie par

$$\operatorname{Tr}\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = a + d.$$

Parmi les familles de matrices suivantes, laquelle forme une base de Ker(Tr)?

$$\blacksquare \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \text{ et } \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}.$$

Solution: Le noyau de Tr est un sous-espace de $M_{2\times 2}(\mathbb{R})$ de dimension 3. En effet pour avoir $\operatorname{Tr}\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = 0$, il faut que a+d=0, autrement dit que d=-a. Ainsi $\operatorname{Ker}(\operatorname{Tr})$ est égal au sous-espace vectoriel de $M_{2\times 2}(\mathbb{R})$

$$\left\{ \begin{pmatrix} a & b \\ c & -a \end{pmatrix} \middle| a, b, c \in \mathbb{R} \right\}$$

qui est de dimension 3 car $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ et $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ en est une base évidente.

Parmi les choix proposés, une base de ce sous-espace est $\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ et

 $\begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$. En effet les trois matrices ci-dessus sont linéairement indépendantes et appartiennent au noyau de Tr. Comme celui-ci est de dimension 3 il s'agit donc d'une base de Ker(Tr). Les autres familles ont 2 ou 4 vecteurs, donc ne sont pas des bases de Ker(Tr), tandis que l'autre famille avec 3 vecteurs est liée.

Question 6

- a) Soit $W = \operatorname{Span}\{\vec{v_1}, \vec{v_2}, \vec{v_3}\}$ où $\vec{v_1} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\vec{v_2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\vec{v_3} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Trouver $\dim(W)$.
- b) Trouver un sous-ensemble \mathcal{B} de $\{\vec{v_1}, \vec{v_2}, \vec{v_3}\}$ tel que \mathcal{B} soit une base de W.
- c) Completer l'ensemble $\{\vec{v_1} + \vec{v_2}\} \subset W$ pour obtenir une base de W.

Solution:

- a) Deux. En effet, les vecteurs $\vec{v_2}, \vec{v_3}$ sont linéairement indépendants, donc la dimension est au moins deux. Elle est inférieure ou égale à 2 car c'est un sous-espace de \mathbb{R}^2 .
- b) $\mathcal{B} = \{\vec{v_2}, \vec{v_3}\}$ c'est la base canonique de \mathbb{R}^2 . (Note: $\{\vec{v_1}, \vec{v_3}\}$ et $\{\vec{v_1}, \vec{v_2}\}$ sont aussi possibles).
- c) L'espace W est de dimension deux, donc n'importe quel vecteur non colinéaire à $\vec{v_1} + \vec{v_2} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$ convient. Par exemple, on peut proposer la base $\{\vec{v_1} + \vec{v_2}, \vec{v_1}\}$ de W.

Rappel. Soit V un espace vectoriel, et des bases $\mathcal{B} = \{\vec{b}_1, \dots \vec{b}_n\}$ et $\mathcal{C} = \{\vec{c}_1 \dots \vec{c}_n\}$ de V.

• Les coordonnées de $\vec{v} \in V$ dans la base \mathcal{B} sont les coefficients de l'unique combinaison linéaire de \vec{v} dans \mathcal{B} , c'est à dire

$$[\vec{v}]_{\mathcal{B}} = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \iff \vec{v} = \alpha_1 \vec{b}_1 + \dots + \alpha_n \vec{b}_n.$$

• La matrice de changement de base de \mathcal{B} vers \mathcal{C} est définie par

$$P_{\mathcal{CB}} = \left([\vec{b}_1]_{\mathcal{C}} \dots [\vec{b}_1]_{\mathcal{C}} \right) (= [\mathcal{B}]_{\mathcal{C}})$$

et satisfait la formule de changements de base

$$[\vec{v}]_{\mathcal{C}} = P_{\mathcal{C}\mathcal{B}}[\vec{v}]_{\mathcal{B}}.$$

Question 7 Exprimer les coordonnées des vecteurs \vec{v} par rapport aux bases \mathcal{B} et \mathcal{C} et écrire la matrice de changement de base $P_{\mathcal{CB}}$.

a)
$$\vec{v} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
, $\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$, $\mathcal{C} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$

b)
$$\vec{v} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$$
, $\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$, $\mathcal{C} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} \right\}$.

Solution:

a) Les coordonnées cherchées sont

$$[\vec{v}]_{\mathcal{B}} = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}, \quad [\vec{v}]_{\mathcal{C}} = \begin{pmatrix} \gamma_1 \\ \gamma_2 \end{pmatrix}$$

avec

$$\vec{v} = \beta_1 \vec{b_1} + \beta_2 \vec{b_2} = \gamma_1 \vec{c_1} + \gamma_2 \vec{c_2},$$

ce qui revient à résoudre les systèmes matriciels

$$\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \implies \beta_1 = 2, \ \beta_2 = -1,$$

$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} \gamma_1 \\ \gamma_2 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \implies \gamma_1 = 5/2, \ \gamma_2 = -1/2.$$

La matrice de changement de base est par définition

$$P_{\mathcal{CB}} = \begin{pmatrix} [\vec{b}_1]_{\mathcal{C}} & [\vec{b}_2]_{\mathcal{C}} \end{pmatrix} = \begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix},$$

avec

$$\vec{b}_1 = x_1 \vec{c}_1 + x_2 \vec{c}_2, \quad \vec{b}_2 = y_1 \vec{c}_1 + y_2 \vec{c}_2,$$

ce qui revient à résoudre l'équation matricielle

$$\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix} \implies \begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 3 & 1 \\ -1 & -1 \end{pmatrix}.$$

b) Les coordonnées cherchées sont

$$[\vec{v}]_{\mathcal{B}} = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix}, \quad [\vec{v}]_{\mathcal{C}} = \begin{pmatrix} \gamma_1 \\ \gamma_2 \\ \gamma_3 \end{pmatrix}$$

avec

$$\vec{v} = \beta_1 \vec{b_1} + \beta_2 \vec{b_2} + \beta_3 \vec{b_3} = \gamma_1 \vec{c_1} + \gamma_2 \vec{c_2} + \gamma_3 \vec{c_3},$$

ce qui revient à résoudre les systèmes matriciels

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} \implies \beta_1 = -1, \ \beta_2 = 3, \ \beta_3 = 2$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} \gamma_1 \\ \gamma_2 \\ \gamma_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} \implies \gamma_1 = 2, \ \gamma_2 = -3, \gamma_3 = -4.$$

Pour trouver la matrice de changement de base de \mathcal{B} vers \mathcal{C} , nous pouvons procéder comme dans (i) avec des inversions de matrice :

$$P_{\mathcal{CB}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 0 \\ -1 & -1 & -1 \end{pmatrix}.$$

Alternativement, si les bases ne sont pas trop difficiles, il est possible (et recommandé) de directement construire $P_{\mathcal{CB}}$ en observant les coordonnées des vecteurs de \mathcal{B} selon la base \mathcal{C} :

$$\vec{b}_1 = \vec{c}_1 - \vec{c}_3, \ \vec{b}_2 = \vec{c}_1 - \vec{c}_2 - \vec{c}_3, \ \vec{b}_3 = -\vec{c}_3 \implies P_{\mathcal{CB}} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 0 \\ -1 & -1 & -1 \end{pmatrix}.$$

Question 8 Soient les bases de \mathbb{R}^2

$$C = \{\vec{c}_1, \vec{c}_2\}, \quad \mathcal{D} = \{\vec{d}_1, \vec{d}_2\},$$

avec \vec{c}_1 et \vec{c}_2 linéairement indépendants et $\vec{d}_1 = \vec{6}c_1 - 2\vec{c}_2$ et $\vec{d}_2 = 9\vec{c}_1 - 4\vec{c}_2$.

- a) Calculer la matrice de changement de base $P_{\mathcal{CD}}$ de \mathcal{D} vers \mathcal{C} .
- b) Calculer la matrice de changement de base $P_{\mathcal{DC}}$ de \mathcal{C} vers \mathcal{D} .
- c) Pour $\vec{x} = -3\vec{c}_1 + 2\vec{c}_2$, calculer $[\vec{x}]_{\mathcal{C}}$ et $[\vec{x}]_{\mathcal{D}}$.

Solution:

a) Les vecteurs de \mathcal{D} nous sont déjà donnés comme combinaison linéaire de vecteurs \mathcal{C} , ce qui nous donne directement la matrice de changement de bases

$$P_{\mathcal{CD}} = \begin{pmatrix} [\vec{d_1}]_{\mathcal{C}} & [\vec{d_2}]_{\mathcal{C}} \end{pmatrix} = \begin{pmatrix} 6 & 9 \\ -2 & -4 \end{pmatrix}.$$

b) Par un résultat du cours,

$$P_{\mathcal{DC}} = P_{\mathcal{CD}}^{-1} = \begin{pmatrix} 6 & 9 \\ -2 & -4 \end{pmatrix}^{-1} = \frac{1}{6} \begin{pmatrix} 4 & 9 \\ -2 & -6 \end{pmatrix}.$$

c) D'une part, nous avons par définition

$$[\vec{x}]_{\mathcal{C}} = [-3\vec{c}_1 + 2\vec{c}_2]_{\mathcal{C}} = \begin{pmatrix} -3\\2 \end{pmatrix}.$$

D'autre part, en utilisant la matrice obtenue au point précédent,

$$[\vec{x}]_{\mathcal{D}} = P_{\mathcal{D}C}[\vec{x}]_{\mathcal{C}} = \frac{1}{6} \begin{pmatrix} 4 & 9 \\ -2 & -6 \end{pmatrix} \begin{pmatrix} -3 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Question 9 Soit $p(t) = 2t^2 + t - 3$ et $\mathcal{B} = \{1 + t, t + t^2, -2 + t + t^2\}$ une base de \mathbb{P}_2 . Calculer $[p(t)]_{\mathcal{B}}$.

Solution: Par définition des coordonnées, nous cherchons $x_1, x_2, x_3 \in \mathbb{R}$ tels que

$$2t^2 + t - 3 = x_1(1+t) + x_2(t+t^2) + x_3(-2+t+t^2) = (x_1 - 2x_3) + (x_1 + x_2 + x_3)t + (x_2 + x_3)t^2.$$

Ce qui correspond au système linéaire

$$\begin{cases} x_1 - 2x_3 = -3 \\ x_1 + x_2 + x_3 = 1 \\ x_2 + x_3 = 2 \end{cases} \implies x_1 = -1, \ x_2 = 1, x_3 = 1.$$

Question 10 Soit $A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$ et $\mathcal{B} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \right\}$ une base de $M_{2\times 2}$. Calculer $[A]_{\mathcal{B}}$.

Solution: Par définition des coordonnées, nous cherchons $x_1, x_2, x_3, x_4 \in \mathbb{R}$ tels que

$$\begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} = x_1 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + x_2 \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} + x_3 \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} + x_4 \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 + x_3 + x_4 & x_2 + x_3 + x_4 \\ x_3 + x_4 & x_4 \end{pmatrix}.$$

Ce qui correspond au système linéaire

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 1 \\ x_2 + x_3 + x_4 = 3 \\ x_3 + x_4 = 2 \end{cases} \implies x_1 = -2, \ x_2 = 1, x_3 = -2, x_4 = 4.$$

Question 11

a) Calculer le déterminant suivant :

$$\begin{vmatrix} 6 & 0 & 5 & 0 \\ 0 & 0 & 0 & 1 \\ 3 & 2 & 1 & 0 \\ 4 & 3 & 2 & 1 \end{vmatrix}$$

Solution: Un chemin possible :

$$\begin{vmatrix} 6 & 0 & 5 & 0 \\ 0 & 0 & 0 & 1 \\ 3 & 2 & 1 & 0 \\ 4 & 3 & 2 & 1 \end{vmatrix} = \begin{vmatrix} 6 & 0 & 5 \\ 3 & 2 & 1 \\ 4 & 3 & 2 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 5 \\ 2 & 2 & 1 \\ 2 & 3 & 2 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 5 \\ 0 & 2 & 1 \\ -1 & 3 & 2 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 5 \\ 0 & 2 & 1 \\ 0 & 3 & 7 \end{vmatrix} = \begin{vmatrix} 2 & 1 \\ 3 & 7 \end{vmatrix} = 11.$$

b) Calculer les déterminants suivants :

$$\begin{vmatrix} a & b & a \\ b & a & b \\ a+b & a+b & a+b \end{vmatrix}, \quad \begin{vmatrix} a & b & 0 \\ a & a+b & c \\ a & b & a \end{vmatrix}.$$

Solution:

$$\begin{vmatrix} a & b & a \\ b & a & b \\ a+b & a+b & a+b \end{vmatrix} = \begin{vmatrix} a & b & a \\ b & a & b \\ 0 & 0 & 0 \end{vmatrix} = 0, \quad \begin{vmatrix} a & b & 0 \\ a & a+b & c \\ a & b & a \end{vmatrix} = \begin{vmatrix} a & b & 0 \\ 0 & a & c \\ 0 & 0 & a \end{vmatrix} = a^3$$

c) Soient
$$A = \begin{pmatrix} 4 & 3 & 0 & 1 \\ 2 & 1 & 4 & 0 \\ 4 & 18 & 17 & 23 \\ 49 & 1 & 72 & 10 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & 1 & 18 & 0 \\ 2 & 0 & 1 & 0 \\ 1 & 0 & \frac{1}{2} & 0 \\ 3 & 4 & 1 & 18 \end{pmatrix}$. Calculer $\det(AB)$.

Solution: det(AB) = det(A) det(B), or

$$\det(B) = \begin{vmatrix} 0 & 1 & 18 & 0 \\ 2 & 0 & 1 & 0 \\ 1 & 0 & \frac{1}{2} & 0 \\ 3 & 4 & 1 & 18 \end{vmatrix} = 18 \begin{vmatrix} 0 & 1 & 18 \\ 2 & 0 & 1 \\ 1 & 0 & \frac{1}{2} \end{vmatrix} = 18 \begin{vmatrix} 2 & 1 \\ 1 & \frac{1}{2} \end{vmatrix} = 0 \implies \det(AB) = 0.$$

Question 12 Répondre aux questions suivantes :

a) Combien de pivots une matrice 7×5 doit-elle posséder pour que ses colonnes soient linéairement indépendantes ?

Solution: L'indépendance linéaire des colonnes de la matrice demande un pivot par colonne, donc 5 pivots.

b) Combien de pivots une matrice 5×7 doit-elle posséder pour que ses colonnes soient linéairement indépendantes ?

Solution: Cette situation est impossible, car l'indépendance linéaire des colonnes de la matrice demanderait 7 pivots, mais il n'y a que 5 lignes.

c) Combien de pivots une matrice 5×7 doit-elle posséder pour que ses colonnes engendrent \mathbb{R}^5 ?

Solution: La générativité des colonnes de la matrice (équivalente à la compatibilité de tout système linéaire non-homogène) demande un pivot par ligne, donc 5 pivots.

d) Combien de pivots une matrice 5×7 doit-elle posséder pour que ses colonnes engendrent \mathbb{R}^7 ?

Solution: Cette situation est impossible, car une matrice à 5 lignes ne peux pas engendrer un espace de dimension 7.

Question 13 Soient V et W deux espaces vectoriels, $T:V\to W$ une transformation linéaire et $\{\vec{v}_1,\ldots,\vec{v}_k\}$ un sous-ensemble de V. Démontrer les affirmations suivantes

a) Si $\{\vec{v}_1, \ldots, \vec{v}_k\}$ est linéairement dépendant (lié) alors $\{T(\vec{v}_1), \ldots, T(\vec{v}_k)\}$ est aussi linéairement dépendant (lié).

Solution: Si la famille $\{v_i\}$ est liée, alors il existe $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$, pas tous nuls, tels que

$$0_V = \lambda_1 \vec{v}_1 + \dots + \lambda_k \vec{v}_k.$$

En appliquant l'application linéaire T des deux côtés de cette égalité, nous avons

$$T(0_V) = T(\lambda_1 \vec{v}_1 + \dots + \lambda_k \vec{v}_k)$$

$$\implies 0_W = \lambda_1 T(\vec{v}_1) + \dots + \lambda_k T(\vec{v}_k).$$

Puisque les λ_i ne sont pas tous non-nuls, alors la famille $\{T(\vec{v}_i)\}$ est liée.

b) Si T est injective et $\{\vec{v}_1, \dots, \vec{v}_k\}$ est linéairement indépendant (libre) alors l'ensemble $\{T(\vec{v}_1), \dots, T(\vec{v}_k)\}$ est aussi linéairement indépendant (libre).

Solution: Soient $\lambda_1, \ldots \lambda_k \in \mathbb{R}$ tels que

$$0_W = \lambda_1 T(\vec{v}_1) + \dots + \lambda_k T(\vec{v}_k) = T(\lambda_1 \vec{v}_1 + \dots + \lambda_k \vec{v}_k),$$

où on a utilisé la linéarité de T. Par injectivité de T, seul l'élément neutre de V admet comme image l'élément neutre de W, c'est à dire

$$\lambda_1 \vec{v}_1 + \dots + \lambda_k \vec{v}_k = 0_V.$$

Puisque la famille $\{v_i\}$ est libre, alors les λ_i sont nécessairement nuls, ce qui montre l'indépendance linéaire des $\{T(\vec{v_i})\}$.