Série 5

Mots-clés: matrices inversibles, transformations linéaires, matrice canonique d'une transformation linéaire

Question 1

- a) Calculer l'inverse de la matrice $A = \begin{pmatrix} 2 & 2 \\ 2 & 4 \end{pmatrix}$
 - (i) en utilisant la formule générale de l'inverse d'une matrice 2×2 ; Solution: $\det(A) = 2 \times 4 - 2 \times 2 = 4$. Ainsi, $A^{-1} = \frac{1}{4} \begin{pmatrix} 4 & -2 \\ -2 & 2 \end{pmatrix} = \begin{pmatrix} 1 & -1/2 \\ -1/2 & 1/2 \end{pmatrix}$.
 - (ii) en mettant la matrice $(A \mid I_2)$ sous forme échelonnée réduite. Solution:

$$\begin{pmatrix} 2 & 2 & 1 & 0 \\ 2 & 4 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 2 & 2 & 1 & 0 \\ 0 & 2 & -1 & 1 \end{pmatrix} \sim \begin{pmatrix} 2 & 0 & 2 & -1 \\ 0 & 2 & -1 & 1 \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & 0 & 1 & -1/2 \\ 0 & 1 & -1/2 & 1/2 \end{pmatrix}.$$
Ainsi, $A^{-1} = \begin{pmatrix} 1 & -1/2 \\ -1/2 & 1/2 \end{pmatrix}$.

b) Calculer l'inverse de la matrice $A=\begin{pmatrix}1&0&-2\\-3&1&4\\2&-3&4\end{pmatrix}$ en mettant la matrice $(A\mid I_3)$ sous forme échelonnée réduite.

$$\begin{pmatrix} 1 & 0 & -2 & 1 & 0 & 0 \\ -3 & 1 & 4 & 0 & 1 & 0 \\ 2 & -3 & 4 & 0 & 0 & 1 \end{pmatrix} \sim \cdots \sim \begin{pmatrix} 1 & 0 & 0 & 8 & 3 & 1 \\ 0 & 1 & 0 & 10 & 4 & 1 \\ 0 & 0 & 1 & 7/2 & 3/2 & 1/2 \end{pmatrix}.$$

Ainsi,
$$A^{-1} = \begin{pmatrix} 8 & 3 & 1 \\ 10 & 4 & 1 \\ 7/2 & 3/2 & 1/2 \end{pmatrix}$$
.

Question 2

- a) Est-ce que la matrice $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ est inversible? Si oui calculer son inverse.
- b) Trouver les solutions du système homogène $A\vec{x} = \vec{0}$.
- c) Trouver les solutions du système $A\vec{x} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

Solution:

a) Oui, on le voit en échelonnant la matrice augmentée $(A \mid I_3)$:

$$\begin{pmatrix} 0 & 1 & 1 & | & 1 & 0 & 0 \\ 1 & 0 & 1 & | & 0 & 1 & 0 \\ 1 & 1 & 0 & | & 0 & 0 & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & 1 & | & 0 & 1 & 0 \\ 1 & 1 & 0 & | & 0 & 0 & 1 \\ 0 & 1 & 1 & | & 0 & 0 & 1 & 0 \\ 0 & 1 & -1 & | & 0 & -1 & 1 \\ 0 & 1 & 1 & | & 1 & 0 & 0 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & 1 & | & 0 & 1 & 0 \\ 0 & 1 & -1 & | & 0 & -1 & 1 \\ 0 & 0 & 2 & | & 1 & 1 & -1 \end{pmatrix} \rightsquigarrow$$

$$\begin{pmatrix} 1 & 0 & 1 & | & 0 & 1 & 0 \\ 0 & 1 & -1 & | & 0 & -1 & 1 \\ 0 & 0 & 1 & | & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & 0 & | & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & 1 & 0 & | & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 & | & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$

$$Ainsi \ A^{-1} = \frac{1}{2} \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$

- b) Comme A est inversible, l'unique solution de $A\vec{x} = \vec{0}$ est $\vec{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$.
- c) Comme A est inversible, la seule solution à ce système est $x = A^{-1}b = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$.

Question 3 Pour quelles valeurs des paramètres a, b, c la matrice A ci-dessous est-elle inversible?

$$A = \begin{pmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & 1 & c \\ 0 & 0 & c & 1 \end{pmatrix}$$

Donner l'inverse de A lorsque cela est possible.

Solution: Une forme échelonnée de A est donnée par

$$\begin{pmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 - c^2 \end{pmatrix}$$

Ainsi A est inversible si et seulement si $a \neq 0$, $b \neq 0$ et $c \neq \pm 1$. Son inverse est

$$A^{-1} = \begin{pmatrix} \frac{1}{a} & 0 & 0 & 0\\ 0 & \frac{1}{b} & 0 & 0\\ 0 & 0 & \frac{1}{1-c^2} & -\frac{c}{1-c^2}\\ 0 & 0 & -\frac{c}{1-c^2} & \frac{1}{1-c^2} \end{pmatrix}$$

Question 4 Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

a)	Soient A , B et C trois matrices. Al	lors (AB)C = (AC)B.
	Faux	☐ Vrai
b)	Si A est une matrice inversible, alors A^{-1} l'est aussi.	
	Faux	Vrai

c) Le produit de plusieurs matrices inversibles de taille $n \times n$ n'est pas inversible.

Faux Vrai

d) Si A est une matrice inversible de taille $n \times n$, alors l'équation $A\vec{x} = \vec{b}$ est compatible quel que soit $\vec{b} \in \mathbb{R}^n$.

Faux Vrai

a) Faux. Prenons
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = C$$
 et $B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ Alors on a
$$(AB)C = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix},$$

tandis que

$$(AC)B = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}.$$

- b) Vrai. Soit A une matrice inversible de taille $n \times n$, alors il existe une matrice, notée A^{-1} , telle que $AA^{-1} = I_n = A^{-1}A$. Ces équations, lues de droite à gauche, disent que la matrice A^{-1} est aussi inversible et que son inverse vaut A, ainsi $(A^{-1})^{-1} = A$.
- c) Faux. Si A et B sont inversibles, d'inverses respectifs A^{-1} et B^{-1} , alors le produit AB est inversible et son inverse vaut $(AB)^{-1} = B^{-1}A^{-1}$. En effet $(AB)(B^{-1}A^{-1}) = I_n = (B^{-1}A^{-1})(AB)$. Donc le produit de plusieurs matrices inversibles de taille $n \times n$ est toujours inversible.
- d) Vrai. Soit A une matrice inversible de taille $n \times n$ et $\vec{b} \in \mathbb{R}^n$ alors l'équation $A\vec{x} = \vec{b}$ admet une (unique) solution qui est $\vec{x} = A^{-1}\vec{b}$.

Question 5

- a) Les matrices sont de taille $n \times n$.
 - Soient A, B deux matrices inversibles, alors AB est inversible et $(AB)^{-1} = A^{-1}B^{-1}$.
 - Soient A, B deux matrices inversibles, alors A + B est inversible.
 - \square Il existe une matrice A inversible et une matrice B qui ne l'est pas telles que AB est inversible.
 - Soient A, B deux matrices telles que A ou B n'est pas inversible. Alors AB n'est pas inversible.
- b) Soit A une matrice $m \times n$ et B une matrice $n \times p$.
 - Si m = n = p, $A = A^T$ et $B = B^T$, alors $(AB)^T = AB$.
 - Si m = n et $A = A^T$, alors A est diagonale.
 - Alors $(A^{-1})^T = (A^T)^{-1}$ si A est inversible.
 - Alors $(AB)^T = A^T B^T$.
- c) Soient A, B, C trois matrices $n \times n$.
 - \square Si A est inversible et AC = BC, alors A = B.
 - \Box Si $C = C^T$ et AC = BC, alors A = B.
 - Si C est inversible et AC = BC, alors A = B.
 - \square Si AC = BC, alors A = B.

- a) Si AB est inversible, alors l'application linéaire représentée par AB est bijective. On en déduit que B est injective et A est surjective, donc A, B sont bijectives, donc inversibles, vu que ce sont des matrices carrées. Ainsi, si A ou B n'est pas inversible, AB n'est pas inversible. Pour voir que la somme de matrices inversibles n'est pas toujours inversible, prendre A = I et B = -I. Puis, il est vrai que si A et B sont inversibles, alors AB est inversible, mais l'inverse est donné par $(AB)^{-1} = B^{-1}A^{-1}$.
- b) La formule correcte est $(AB)^T = B^TA^T$ et donc on a $(AB)^T = BA$ dans ce cas-ci. Ceci élimine deux réponses. En cours on a vu que A est inversible si et seulement si A^T l'est. L'égalité $A = A^T$ dit seulement que la matrice est symétrique.

c) Pour voir que les points 1, 2 et 4 sont faux, prendre, par exemple,

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}, B = \begin{pmatrix} 3 & -2 \\ 2 & 1 \end{pmatrix}$$
 et $C = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.

Le point 3 est vrai, car si on applique C^{-1} à droite de chaque côté de l'équation AC = BC, on obtient A = B.

Question 6

On considère la population d'une région, divisée en population rurale et urbaine. On note R_n et U_n les populations rurales et urbaines à l'année n. On notera par a le taux d'exode rural annuel et par b le taux d'exode urbain (que l'on supposera constants et donnés en % de sorte que $0 \le a, b \le 1$).

- a) Écrivez des équations qui donnent R_{n+1} et U_{n+1} en fonction de R_n, U_n, a et b.
- b) Écrivez ces équations en une équation matricielle $A \begin{pmatrix} R_n \\ U_n \end{pmatrix} = \begin{pmatrix} R_{n+1} \\ U_{n+1} \end{pmatrix}$ où A est une matrice 2×2 .
- c) Prenons les valeurs a = 0.2 et b = 0.1, ainsi que $R_0 = 100'000 = U_0$. Calculez la population rurale et urbaine à la troisième année.
- d) Donnez une formule pour R_n et U_n en fonction de R_0 , U_0 et A^n .

Solution:

- a) On trouve $R_{n+1} = (1-a)R_n + bU_n$ et $U_{n+1} = aR_n + (1-b)U_n$.
- b) Posons $\vec{x}_n = \begin{pmatrix} R_n \\ U_n \end{pmatrix}$ et $A = \begin{pmatrix} 1-a & b \\ a & 1-b \end{pmatrix}$. Alors les équations ci-dessus s'écrivent $A \cdot \vec{x}_n = \vec{x}_{n+1}$. Ou encore

$$\begin{pmatrix} 1-a & b \\ a & 1-b \end{pmatrix} \begin{pmatrix} R_n \\ U_n \end{pmatrix} = \begin{pmatrix} R_{n+1} \\ U_{n+1} \end{pmatrix}.$$

c) On a ici $A = \begin{pmatrix} 0.8 & 0.1 \\ 0.2 & 0.9 \end{pmatrix}$ et $\vec{x}_0 = \begin{pmatrix} 100'000 \\ 100'000 \end{pmatrix}$. On a $\vec{x}_1 = A\vec{x}_0$, $\vec{x}_2 = A\vec{x}_1$ et donc $\vec{x}_2 = A^2\vec{x}_0$, puis $\vec{x}_3 = A^3\vec{x}_0$ etc.

On calcule alors
$$\vec{x}_3 = A^3 \vec{x}_0 = \begin{pmatrix} 0.562 & 0.219 \\ 0.438 & 0.781 \end{pmatrix} \begin{pmatrix} 100'000 \\ 100'000 \end{pmatrix} = \begin{pmatrix} 78'100 \\ 121'900 \end{pmatrix}$$

d) On a
$$A^n \begin{pmatrix} R_0 \\ U_0 \end{pmatrix} = \begin{pmatrix} R_n \\ U_n \end{pmatrix}$$
 ou encore $A^n \vec{x}_0 = \vec{x}_n$.

Question 7 Trouver les matrices correspondant aux transformations linéaires suivantes (exprimées dans la base canonique) :

a)
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, $T\left(\begin{pmatrix} 1 \\ 0 \end{pmatrix}\right) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $T\left(\begin{pmatrix} 0 \\ 1 \end{pmatrix}\right) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

b)
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
, $T\left(\begin{pmatrix} 1\\0 \end{pmatrix}\right) = \begin{pmatrix} 1\\0\\1 \end{pmatrix}$, $T\left(\begin{pmatrix} 0\\1 \end{pmatrix}\right) = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$

c)
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
, $T\left(\begin{pmatrix} 1\\0\\0 \end{pmatrix}\right) = \begin{pmatrix} 1\\1 \end{pmatrix}$, $T\left(\begin{pmatrix} 0\\1\\0 \end{pmatrix}\right) = \begin{pmatrix} 0\\1 \end{pmatrix}$, $T\left(\begin{pmatrix} 0\\1\\0 \end{pmatrix}\right) = \begin{pmatrix} 2\\7 \end{pmatrix}$

Solution:

a)
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

b)
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$

$$c) A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 7 \end{pmatrix}$$

Question 8 Soit
$$T_1: \mathbb{R}^2 \to \mathbb{R}^3$$
 définie par $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1 \\ x_2 \\ x_1 \end{pmatrix}$, et $T_2: \mathbb{R}^3 \to \mathbb{R}$ définie par $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto x_1 + x_2 + x_3$.

- a) Écrire les matrices canoniques associées à T_1 et T_2 et le produit matriciel associé à la composition $T_2 \circ T_1$ telle que $T_2 \circ T_1(\vec{x}) = T_2(T_1(\vec{x}))$ pour tout $\vec{x} \in \mathbb{R}^2$.
- b) Quel est le domaine de définition de $T_2 \circ T_1$? Quel est le domaine d'arrivée?

a)
$$T_1(\mathbf{e}_1) = T_1(\begin{pmatrix} 1 \\ 0 \end{pmatrix}) = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
, $T_1(\mathbf{e}_2) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$. Donc $A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$.

De même $A_2 = (1 \ 1 \ 1)$.

Ainsi la composition $T_2 \circ T_1$ correspond à $A_2A_1 = \begin{pmatrix} 2 & 1 \end{pmatrix}$.

b) On a $T_2 \circ T_1 : \mathbb{R}^2 \to \mathbb{R}$. Le domaine de définition est \mathbb{R}^2 . Le domaine d'arrivée est \mathbb{R} .

Question 9 Calculer les produits matriciels suivants, et indiquer les compositions correspondantes de transformations linéaires, avec les dimensions des espaces, $T_{AB}: \mathbb{R}^{\cdots} \to \mathbb{R}^{\cdots} \to \mathbb{R}^{\cdots}$.

a)
$$AB$$
, où $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \end{pmatrix}$.

b)
$$ABC$$
, où $A = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{pmatrix}$.

c)
$$ABC$$
, où $A = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$.

a)
$$AB = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{pmatrix}$$
, $T_{AB} : \mathbb{R}^3 \xrightarrow{T_B} \mathbb{R}^2 \xrightarrow{T_A} \mathbb{R}^3$.

b)
$$ABC = \begin{pmatrix} 8 & 16 \\ 8 & 16 \end{pmatrix}$$
, $\vec{T}_{ABC} : \mathbb{R}^2 \xrightarrow{T_C} \mathbb{R}^3 \xrightarrow{T_B} \mathbb{R}^2 \xrightarrow{T_A} \mathbb{R}^2$.

c)
$$ABC = \begin{pmatrix} 4 & 0 & 4 \\ 6 & 0 & 6 \\ 2 & 0 & 2 \end{pmatrix}$$
, $T_{ABC} : \mathbb{R}^3 \xrightarrow{T_C} \mathbb{R}^3 \xrightarrow{T_B} \mathbb{R} \xrightarrow{T_A} \mathbb{R}^3$.

Question 10

- a) Dans le plan, soit S la symétrie axiale d'axe x = -y. Décrire son inverse s'il existe. Quelles sont les matrices de ces applications?
- b) Même question pour H l'homothétie de rapport 3.
- c) Même question pour R_{θ} la rotation d'angle θ centrée en l'origine.

Solution:

a) L'inverse de S est l'application S elle-même. La matrice associée est

$$S = S^{-1} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}.$$

b) L'inverse de H est une homothétie de rapport $\frac{1}{3}$. Les matrices associées sont

$$H = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}, \quad H^{-1} = \begin{pmatrix} \frac{1}{3} & 0 \\ 0 & \frac{1}{3} \end{pmatrix}.$$

c) L'inverse de R_{θ} est $R_{-\theta}$. Les matrices associées sont

$$R_{\theta} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix},$$

$$(R_{\theta})^{-1} = R_{-\theta} = \begin{pmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{pmatrix} = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}.$$
On a bien $R_{\theta} \cdot R_{-\theta} = \begin{pmatrix} \cos^2(\theta) + \sin^2(\theta) & 0 \\ 0 & \cos^2(\theta) + \sin^2(\theta) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$