Série 14

Mots-clés: Décomposition en valeurs singulières.

Rappel: valeurs singulières.

Les valeurs singulières de $A \in M_{m \times n}$ sont définies par $\sigma_i = \sqrt{\lambda_i}$ où λ_i sont les valeurs propres (toujours positives) de $A^T A$. On a toujours

 $\sigma_i = ||A\vec{v}_i||$, où \vec{v}_i est un vecteur propre unitaire de A^TA .

Rappel: décomposition en valeurs singulières.

Une matrice $A \in M_{m \times n}$ de rang k peut toujours s'écrire $A = U \Sigma V^T$ avec

• $\Sigma \in M_{m \times n}$ est la matrice des valeurs singulières de A:

$$\Sigma = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} \in M_{m \times n}, \quad \text{avec} \quad D = \begin{pmatrix} \sigma_1 & 0 \\ & \ddots & \\ 0 & & \sigma_k \end{pmatrix}, \quad \sigma_1 \ge \cdots \ge \sigma_k > 0,$$

où σ_i sont les valeurs singulières **non-nulles** de A.

- $V = (\vec{v}_1 \dots \vec{v}_n) \in M_{n \times n}$ est la matrice **orthogonale** des vecteurs propres de $A^T A$, classées selon **l'ordre décroissant de ses valeurs propres**.
- $U = (A\vec{v}_1 \dots A\vec{v}_k \ \vec{u}_{k+1} \dots \vec{v}_m) \in M_{m \times m}$ est la matrice **orthogonale** de l'image des vecteurs propres de $A^T A$, complétée, si nécessaire (quand k < m), en une base de \mathbb{R}^m par des vecteurs unitaires.

Question 1 Soit A une matrice de taille $m \times n$.

- a) Montrer que $Ker A = Ker(A^T A)$.
- b) Montrer que A^TA est inversible si et seulement si les colonnes de A sont linéairement indépendantes.

Solution:

a) Si Ax = 0, alors $A^TAx = 0$, ce qui montre $\operatorname{Ker}(A) \subset \operatorname{Ker}(A^TA)$. Soit x tel que $A^TAx = 0$, alors $x^TA^TAx = 0$. Or, $x^TA^TAx = (Ax)^T(Ax) = ||Ax||^2$. Ainsi, Ax = 0, et $\operatorname{Ker}(A^TA) \subset \operatorname{Ker}(A)$. D'où l'égalité.

b) Les colonnes de A sont linéairement indépendantes \iff Ker $(A) = \{0\}$. Ainsi, d'après a), les colonnes de A sont linéairement indépendantes si et seulement si Ker $(A^TA) = \{0\}$, c'est-à-dire la matrice (carrée) A^TA est inversible.

Question 2 Trouver une décomposition en valeurs singulières des matrices

$$A = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} -3 & 1 \\ 6 & -2 \\ 6 & -2 \end{pmatrix} \quad C = \begin{pmatrix} 2 & 0 \\ 1 & 1 \\ -1 & 1 \end{pmatrix}.$$

Solution:

a) La matrice A étant diagonale, elle est égale à sa propres matrice des valeurs singulières. Nous montrons cependant que la méthode de calcul est consistante dans ce cas particulier. Les valeurs propres de $A^TA\begin{pmatrix} 4 & 0 \\ 0 & 0 \end{pmatrix}$ sont $\lambda_1=4$ et $\lambda_2=0$. On obtient $\sigma_1=2$ et $\sigma_2=0$. Les vecteurs propres associés aux valeurs propres sont

$$v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 et $v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

On calcule ensuite $Av_1 = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$ et $Av_2 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. On cherche une base orthonormale de \mathbb{R}^2 , on prend $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ pour complèter le vecteur Av_1 . On obtient facilement

$$U = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ et } V = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

b) Pour la matrice B. On a $B^TB=\begin{pmatrix} 81 & -27 \\ -27 & 9 \end{pmatrix}$. Les valeurs propres sont $\lambda_1=90$ et $\lambda_2=0$, donc les valeurs singulières sont $\sigma_1=\sqrt{90}=3\sqrt{10}$ et $\sigma_2=0$, d'où

$$\Sigma = \begin{pmatrix} 3\sqrt{10} & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

On calcule les vecteurs propres v_1, v_2 , et on les normalise, ce qui donne la matrice V

$$V = \begin{pmatrix} -3/\sqrt{10} & 1/\sqrt{10} \\ 1/\sqrt{10} & 3/\sqrt{10} \end{pmatrix}$$

On a On calcule Bv_1 et Bv_2

$$Bv_1 = \begin{pmatrix} 10 \\ -20 \\ -20 \end{pmatrix} \text{ et } Bv_2 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

On a que $\{Bv_1\}$ est une base de $\operatorname{Im}(B)$. On doit la complèter avec deux vecteurs orthogonaux. Le complément orthogonal de $\operatorname{Im}(B) = \operatorname{Span}\left\{\begin{pmatrix} 1 \\ -2 \\ -2 \end{pmatrix}\right\}$ est donné par le noyau de la matrice

$$\begin{pmatrix} 1 & -2 & -2 \end{pmatrix} \implies x - 2y - 2z = 0 \implies \operatorname{Im}(B)^{\perp} = \operatorname{Span} \left\{ \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

Ces deux vecteurs ne sont pas orthogonaux entre eux. On doit appliquer la méthode de Gram-Schmidt, qui donne une nouvelle base OG

$$\operatorname{Im}(B)^{\perp} = \operatorname{Span}\left\{ \begin{pmatrix} 2\\1\\0 \end{pmatrix}, \begin{pmatrix} 2\\-4\\5 \end{pmatrix} \right\}.$$

Nous avons donc une base OG de \mathbb{R}^3

$$\operatorname{Span}\left\{ \begin{pmatrix} 1\\-2\\-2 \end{pmatrix}, \begin{pmatrix} 2\\1\\0 \end{pmatrix}, \begin{pmatrix} 2\\-4\\5 \end{pmatrix} \right\}$$

, que l'on normalise, pour obtenir finalement

$$U = \begin{pmatrix} 1/3 & 2/\sqrt{5} & 2/\sqrt{45} \\ -2/3 & 1/\sqrt{5} & -4/\sqrt{5} \\ -2/3 & 0 & 5/\sqrt{45} \end{pmatrix}.$$

c) On calcule $C^TC = \begin{pmatrix} 6 & 0 \\ 0 & 2 \end{pmatrix}$, dont les valeurs propres sont trivialement $\lambda_1 = 6, \lambda_2 = 2$. Les valeurs singulières de C sont donc $\sigma_1 = \sqrt{6}, \sigma_2 = \sqrt{2}$, et donc

$$\Sigma = \begin{pmatrix} \sqrt{6} & 0\\ 0 & \sqrt{2}\\ 0 & 0 \end{pmatrix}.$$

Les vecteurs propres de C^TC correspondants sont

$$v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \text{ et } v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

On a obtenu les colonnes de la matrice V. Pour la matrice U qui est 3×3 , il nous faut

$$Cv_1 = \begin{pmatrix} 2\\1\\-1 \end{pmatrix}, \text{ et } Cv_2 = \begin{pmatrix} 0\\1\\1 \end{pmatrix}$$

 $\{Cv_1, Cv_2\}$ est une base orthogonale de $\operatorname{Im}(C)$. Mais il nous manque un vecteur orthogonal aux deux autres pour avoir une base orthogonale de \mathbb{R}^3 . Le complément orthogonal de $\operatorname{Im}(C)$ est le noyau de la matrice

$$\begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix} \implies \operatorname{Im}(C)^{\perp} = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \right\}.$$

On a ainsi une base orthogonale de \mathbb{R}^3 , que l'on normalise pour trouver les colonnes de U:

$$U = \begin{pmatrix} 2/\sqrt{6} & 0 & 1/\sqrt{3} \\ 1/\sqrt{6} & 1/\sqrt{2} & -1/\sqrt{3} \\ -1/\sqrt{6} & 1/\sqrt{2} & 1/\sqrt{3} \end{pmatrix}$$

Question 3 Soit A une matrice et soient $\vec{w_1}, \vec{w_2}$ deux vecteurs propres de la matrice $A^T A$, tels que

$$\vec{w}_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}, \ \vec{w}_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \ A\vec{w}_1 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \ A\vec{w}_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

Utiliser ces informations afin de trouver des matrices U, Σ et V telles que A possède une décomposition en valeurs singulières de la forme

$$A = U\Sigma V^T.$$

Démarche proposée :

- d'abord déduisez le tailles des matrices A, U, Σ et V;
- normalisez les vecteurs $\vec{w_1}$ et $\vec{w_2}$, on obtient $\vec{v_1}$ et $\vec{v_2}$;
- calculez $A\vec{v}_1$ et $A\vec{v}_2$;
- calculez les valeurs singulières et définissez Σ ;
- complétez \vec{v}_1 et \vec{v}_2 en une base de \mathbb{R}^4 et assurez-vous d'obtenir une base orthonormée en utilisant la méthode du complément orthogonal;
- définissez V en utilisant $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4$;
- normalisez $A\vec{v}_1$ et $A\vec{v}_2$ et utilisez-les pour définir U.

Solution:

- On remarque d'abord que, vu que $\vec{w_i} \in \mathbb{R}^4$ pour i = 1, 2 et le produit matriciel $A\vec{w_i}$ est bien défini, A possède 4 colonnes. En outre, vu que $A\vec{w_i} \in \mathbb{R}^2$ pour i = 1, 2, on voit que A possède 2 lignes. Par conséquent, $A \in M_{2\times 4}(\mathbb{R})$, ce qui implique que $\Sigma \in M_{2\times 4}(\mathbb{R})$, $U \in M_{2\times 2}(\mathbb{R})$ et $V \in M_{4\times 4}(\mathbb{R})$.
- On calcule d'abord la matrice $\Sigma \in M_{2\times 4}(\mathbb{R})$. On remarque que $\vec{w_1} \cdot \vec{w_2} = 0$, et que $\|\vec{w_1}\| = \sqrt{2}$, $\|\vec{w_2}\| = \sqrt{3}$. Comme $\vec{w_i} \in \mathbb{R}^4$ pour i = 1, 2 ne sont pas des vecteur propres normalisés de $A^T A$, on définit d'abord

$$\vec{v}_1 = \frac{\vec{w}_1}{\|\vec{w}_1\|} = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \\ 0 \end{pmatrix} \text{ et } \vec{v}_2 = \frac{\vec{w}_2}{\|\vec{w}_2\|} = \begin{pmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \\ 0 \end{pmatrix}.$$

On conclut que $\vec{v_i} \in \mathbb{R}^4$ pour i = 1, 2 sont des vecteur propres normalisés de $A^T A$. En plus,

$$||A\vec{v}_1|| = \left| \left| \frac{A\vec{w}_1}{||\vec{w}_1||} \right| = \frac{1}{\sqrt{2}} ||A\vec{w}_1|| = \frac{\sqrt{5}}{\sqrt{2}},$$
$$||A\vec{v}_2|| = \left| \left| \frac{A\vec{w}_2}{||\vec{w}_2||} \right| = \frac{1}{\sqrt{3}} ||A\vec{w}_2|| = \frac{\sqrt{5}}{\sqrt{3}}.$$

En conséquence, A possède les valeur singulières, $\sigma_1 = \sqrt{5}/\sqrt{2}$ et $\sigma_2 = \sqrt{5}/\sqrt{3}$, avec $\sigma_1 > \sigma_2$, et donc

$$\Sigma = \begin{pmatrix} \sigma_1 & 0 & 0 & 0 \\ 0 & \sigma_2 & 0 & 0 \end{pmatrix} = \begin{pmatrix} \sqrt{5}/\sqrt{2} & 0 & 0 & 0 \\ 0 & \sqrt{5}/\sqrt{3} & 0 & 0 \end{pmatrix}.$$

• On va calculer maintenant la matrice orthogonale $V \in M_{4\times 4}(\mathbb{R})$. On sait que les deux premières colonnes de V sont les vecteurs propres \vec{v}_1 et \vec{v}_2 normalisés de A^TA . Par ailleurs, comme le deux dernières colonnes de Σ son nulles, le produit ΣV^T dans la décomposition en valeurs singulières $A = U\Sigma V^T$ de A est indépendant des valeurs précises de deux dernières colonnes de V. En conséquence, il suffit de compléter \vec{v}_1 et \vec{v}_2 en une base orthonormée \mathbb{R}^4 $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}$ est une base orthonormée de et définir

$$V = \begin{pmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 & \vec{v}_4 \end{pmatrix}.$$

Nous avons deux méthodes pour cela:

(1) appliquer la méthode de Gram-Schmidt sur $\{\vec{v}_1, \vec{v}_2, \vec{u}_3, \vec{u}_4\}$ où \vec{u}_3, \vec{u}_4 sont deux vecteurs quelconques linéairement indépendants de \vec{v}_1, \vec{v}_2 (typiquement des vecteurs canoniques)

(2) on calcule une base orthogonale du complément orthogonal $\{\vec{v}_1, \vec{v}_2\}^{\perp} = \{\vec{w}_1, \vec{w}_2\}^{\perp}$, qui est donc donné par le noyau de la matrice

$$(\vec{w_1} \ \vec{w_2})^T = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 2 & 1 & 0 \end{pmatrix} \implies \{\vec{v_1}, \vec{v_2}\}^{\perp} = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 1 \\ -2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

Si l'on normalise la base précédente on trouve une base orthonormée $\{\vec{v}_3, \vec{v}_4\}$ de $\{\vec{v}_1, \vec{v}_2\}^{\perp}$ donnée par

$$\vec{v}_3 = \begin{pmatrix} 1/\sqrt{6} \\ 1/\sqrt{6} \\ -2/\sqrt{6} \\ 0 \end{pmatrix} \text{ et } \vec{v}_4 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

On conclut que $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}$ est une base orthonormée de \mathbb{R}^4 . On définit donc la matrice orthogonale

$$V = \begin{pmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 & \vec{v}_4 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & 0\\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & 0\\ 0 & \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

• On va finalement calculer la matrice orthogonale $U = (\vec{u}_1 \vec{u}_2) \in M_{2\times 2}(\mathbb{R})$. Pour le faire on utilise les identités

$$\vec{u}_i = \frac{A\vec{v}_i}{\sigma_i}$$

pour i = 1, 2, vu que $\sigma_1 \ge \sigma_2 > 0$. On trouve ainsi

$$\vec{u}_{1} = \frac{A\vec{v}_{1}}{\sigma_{1}} = \frac{A\vec{w}_{1}}{\sigma_{1}\|\vec{w}_{1}\|} = \frac{1}{\sqrt{5}} \begin{pmatrix} 2\\-1 \end{pmatrix} = \begin{pmatrix} 2/\sqrt{5}\\-1/\sqrt{5} \end{pmatrix},$$

$$\vec{u}_{2} = \frac{A\vec{v}_{2}}{\sigma_{2}} = \frac{A\vec{w}_{2}}{\sigma_{2}\|\vec{w}_{2}\|} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1\\2 \end{pmatrix} = \begin{pmatrix} 1/\sqrt{5}\\2/\sqrt{5} \end{pmatrix}.$$

En conséquence,

$$U = (\vec{u}_1 \, \vec{u}_2) = \begin{pmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{-1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix}.$$

En conclusion, on a

$$A = U\Sigma V^{T} = \begin{pmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix} \begin{pmatrix} \sqrt{\frac{5}{2}} & 0 & 0 & 0 \\ 0 & \sqrt{\frac{5}{3}} & 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & 0 \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & 0 \\ 0 & \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}^{T}.$$