Série 13

Mots-clés: Algorithme de Gram-Schmidt, Méthode des moindres carrés, matrices orthogonales, matrices symétriques.

Rappel:

• Soit base $\{\vec{b}_1, \ldots, \vec{b}_k\}$ d'un sous-espace $W \subset \mathbb{R}^n$. Alors on peut construire une base orthogonale $\{\vec{c}_1, \ldots, \vec{c}_k\}$ de W de la manière suivante :

$$- \vec{c}_1 \stackrel{\text{def}}{=} \vec{b}_1, \qquad W_1 \stackrel{\text{def}}{=} \operatorname{Span}\{\vec{c}_1\},$$

$$- \vec{c}_2 \stackrel{\text{def}}{=} \vec{b}_2 - \operatorname{Proj}_{W_1}(\vec{b}_2), \qquad W_2 \stackrel{\text{def}}{=} \operatorname{Span}\{\vec{c}_1, \vec{c}_2\},$$

$$- \vec{c}_3 \stackrel{\text{def}}{=} \vec{b}_3 - \operatorname{Proj}_{W_2}(\vec{b}_3), \qquad W_3 \stackrel{\text{def}}{=} \operatorname{Span}\{\vec{c}_1, \vec{c}_2, \vec{c}_3\},$$

$$\vdots$$

$$- \vec{c}_i \stackrel{\text{def}}{=} \vec{b}_i - \operatorname{Proj}_{W_{i-1}}(\vec{b}_i), \qquad W_i \stackrel{\text{def}}{=} \operatorname{Span}\{\vec{c}_1, \vec{c}_2, \dots, \vec{c}_i\},$$

$$\vdots$$

$$- \vec{c}_k \stackrel{\text{def}}{=} \vec{b}_k - \operatorname{Proj}_{W_{i-1}}(\vec{b}_k).$$

$$A^T A \hat{x} = A^T \vec{b}.$$

Sa solution minimise $||A\vec{x} - \vec{b}||$.

Question 1 Appliquer la méthode de Gram-Schmidt pour orthogonaliser les bases des sous-espaces vectoriels $W \subseteq \mathbb{R}^n$ suivants.

a)
$$W = \text{Span}\{w_1, w_2\}$$
, avec $w_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $w_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$.

b)
$$W = \text{Span}\{w_1, w_2, w_3\}$$
, avec $w_1 = \begin{pmatrix} 1 \\ 3 \\ 2 \\ 1 \end{pmatrix}$, $w_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}$, $w_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$.

c) Donner une base orthonormale pour a) et b).

Solution:

a) La méthode de Gram-Schmidt donne $u_1 = w_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$,

$$u_2 = w_2 - \frac{w_2 \cdot u_1}{u_1 \cdot u_1} u_1 = \begin{pmatrix} -1/3 \\ 2/3 \\ -1/3 \end{pmatrix}.$$

b) La méthode de Gram-Schmidt donne $u_1 = w_1 = \begin{pmatrix} 1 \\ 3 \\ 2 \\ 1 \end{pmatrix}$,

$$u_2 = w_2 - \frac{w_2 \cdot u_1}{u_1 \cdot u_1} u_1 = \begin{pmatrix} -1/3 \\ 0 \\ 1/3 \\ -1/3 \end{pmatrix},$$

$$u_3 = w_3 - \frac{w_3 \cdot u_1}{u_1 \cdot u_1} u_1 - \frac{w_3 \cdot u_2}{u_2 \cdot u_2} u_2 = \begin{pmatrix} -1/5 \\ 2/5 \\ -2/5 \\ -1/5 \end{pmatrix}.$$

c) Pour a):
$$\frac{u_1}{\|u_1\|} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \frac{u_2}{\|u_2\|} = \frac{1}{\sqrt{6}} \begin{pmatrix} -1\\2\\-1 \end{pmatrix}.$$

Pour b):
$$\frac{u_1}{\|u_1\|} = \frac{1}{\sqrt{15}} \begin{pmatrix} 1\\3\\2\\1 \end{pmatrix}$$
, $\frac{u_2}{\|u_2\|} = \frac{1}{\sqrt{3}} \begin{pmatrix} -1\\0\\1\\-1 \end{pmatrix}$, $\frac{u_3}{\|u_3\|} = \frac{1}{\sqrt{10}} \begin{pmatrix} -1\\2\\-2\\-1 \end{pmatrix}$.

Question 2 Déterminer la solution au sens des moindres carrés du système incompatible $A\vec{x} = \vec{b}$.

a)
$$A = \begin{pmatrix} 2 & 1 \\ -2 & 0 \\ 2 & 3 \end{pmatrix}$$
, $b = \begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix}$,

b)
$$A = \begin{pmatrix} 1 & 3 \\ 1 & -1 \\ 1 & 1 \end{pmatrix}, b = \begin{pmatrix} 5 \\ 1 \\ 0 \end{pmatrix},$$

c)
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \\ -1 & 1 & -1 \end{pmatrix}, b = \begin{pmatrix} 2 \\ 5 \\ 6 \\ 6 \end{pmatrix};$$

Solution:

a) L'équation normale $A^TAx = A^Tb$ est $\begin{pmatrix} 12 & 8 \\ 8 & 10 \end{pmatrix} x = \begin{pmatrix} 10 \\ 10 \end{pmatrix}$, elle a pour solution $x = \begin{pmatrix} 5/14 \\ 5/7 \end{pmatrix}$.

b)
$$A^T A = \begin{pmatrix} 3 & 3 \\ 3 & 11 \end{pmatrix}$$
, $A^T b = \begin{pmatrix} 6 \\ 14 \end{pmatrix}$, $x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

c)
$$A^T A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
, $A^T b = \begin{pmatrix} 1 \\ 14 \\ -5 \end{pmatrix}$, $x = \begin{pmatrix} 1/3 \\ 14/3 \\ -5/3 \end{pmatrix}$.

Question 3

On considère les points

x_i	2	5	6	8
y_i	1	2	3	3

Calculer la droite de régression approchant au mieux ces points.

Solution: Le système linéaire correspondant est $A \begin{pmatrix} a \\ b \end{pmatrix} = y$ où A est donnée

$$\operatorname{par} A = \begin{pmatrix} x_1 & 1 \\ x_2 & 1 \\ x_3 & 1 \\ x_4 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 5 & 1 \\ 6 & 1 \\ 8 & 1 \end{pmatrix}, \text{ et } y = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 3 \end{pmatrix}. \text{ L'équation}$$

normale correspondante est $A^TA\begin{pmatrix} a \\ b \end{pmatrix} = A^Ty$. On obtient la solution

$$\left(\begin{array}{c} a \\ b \end{array}\right) = \left(\begin{array}{c} \frac{9}{25} \\ \frac{9}{25} \end{array}\right) = \left(\begin{array}{c} 0.36 \\ 0.36 \end{array}\right).$$

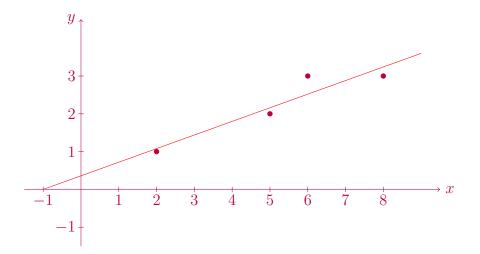


Figure: les points de la donnée et la droite de régression en rouge.

Rappel:

- Une matrice $Q \in M_{n \times n}$ est **orthogonale** si $Q^T Q = I_n$.
- Une matrice $A \in M_{n \times n}$ est **symétrique** si $A^T = A$.
- Théorème spectral : $A \in M_{n \times n}$ est symétrique si et seulement si elle est diagonalisable en base orthonormale, c'est à dire qu'on peut écrire

$$A = PDP^T$$
, avec $D \in M_{n \times n}$ diagonale, $P \in M_{n \times n}$ orthogonale.

Question 4

- a) Montrer que si Q est une matrice orthogonale, alors Q^T est aussi une matrice orthogonale.
- b) Montrer que si U,V sont des matrices $n\times n$ orthogonales, alors UV est aussi une matrice orthogonale.
- c) Montrer que si Q est une matrice orthogonale et $\vec{x} \in \mathbb{R}^n$, alors $||Q\vec{x}|| = ||\vec{x}||$.
- d) Montrer que toute valeur propre réelle λ d'une matrice orthogonale Q vérifie $\lambda = \pm 1$.
- e) Soit Q une matrice orthogonale de taille $n \times n$. Soit $\{u_1, \ldots, u_n\}$ une base orthogonale de \mathbb{R}^n . Montrer que $\{Qu_1, \ldots, Qu_n\}$ est aussi une base orthogonale de \mathbb{R}^n .

Solution:

- a) Par définition, une matrice orthogonale Q de taille $n \times n$ vérifie $Q^TQ = I_n$ et $QQ^T = I_n$. Comme $Q = (Q^T)^T$, on a $Q^T(Q^T)^T = I_n$ et $(Q^T)^TQ^T = I_n$, ce qui montre que Q^T est aussi orthogonale.
- b) En utilisant $VV^T = UU^T = I_n$, on a $UV(UV)^T = UVV^TU^T = UU^T = I_n$. De même, on peut vérifier que $(UV)^T UV = I_n$, donc UV est une matrice orthogonale.
- c) Une matrice orthogonale conserve la norme de tout vecteur x: On a $||Qx||^2 = (Qx)^T(Qx) = x^TQ^TQx = x^Tx = ||x||^2$.
- d) Si $x \neq 0$ est un vecteur propre associé à $\lambda \in \mathbb{R}$, on a $||x|| = ||Qx|| = ||\lambda x|| = ||\lambda|| ||x||$. Comme $||x|| \neq 0$, on obtient $|\lambda| = 1$, ainsi $\lambda = \pm 1$.
- e) On calcule pour tous i, j:

$$Qu_i \cdot Qu_j = (Qu_i)^T Qu_j = u_i^T Q^T Qu_j = u_i^T u_j = u_i \cdot u_j.$$

Comme les u_i sont orthogonaux entre eux, ceci montre que $\{Qu_1, \ldots, Qu_n\}$ est orthogonale et constituée de vecteurs non nuls (de normes $||Qu_i|| = ||u_i||$).

Il reste à montrer que $\{Qu_1, \ldots, Qu_n\}$ est une base. Ayant n vecteurs, il suffit de montrer que la famille est libre, ce qui est une conséquence de l'inversibilité de Q (noyau trivial) et de l'indépendance des $\{u_i\}$:

$$0 = \lambda_1 Q u_1 + \dots + \lambda_n Q u_n = Q(\lambda_1 u_1 + \dots + \lambda_n u_n)$$

$$\Longrightarrow \lambda_1 u_1 + \dots + \lambda_n u_n = 0 \Longrightarrow \lambda_i = 0.$$

Remarque: si $\{u_1, ..., u_n\}$ est une base orthonormée, alors $||Qu_i|| = 1$, et $\{Qu_1, ..., Qu_n\}$ est aussi une base orthonormée.

Question 5 Soit A une matrice symétrique de taille $n \times n$.

- a) Montrer que $(Av) \cdot u = v \cdot (Au)$ pour tous $u, v \in \mathbb{R}^n$.
- b) Donner une matrice B de taille 2×2 telle que $(Bv) \cdot u \neq v \cdot (Bu)$ pour certains $u, v \in \mathbb{R}^2$.
- c) Montrer que si A est inversible, alors l'inverse de A est aussi symétrique.

Solution:

a) En effet, $(Av) \cdot u = (Av)^T u = v^T A^T u = v^T A u = v \cdot (Au)$.

b) Soit
$$B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
. On a $(Bv) \cdot u \neq v \cdot (Bu)$ pour $u = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ et $v = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

c) Nous savons que $(A^{-1})^T = (A^T)^{-1}$ pour toute matrice inversible A. Donc si A est symétrique, i.e. $A = A^T$, alors

$$(A^{-1})^T = (A^T)^{-1} = A^{-1}$$

Nous avons montré que A^{-1} est symétrique.

Question 6 Soit $A \in M_{n \times n}$.

- a) Si $A^2 = 3I_n$, déterminer les seules valeurs propres réelles possibles de A.
- b) Si $A^2 + 2A + I_n = 0$, montrer que -1 est une valeur propre de A.

Solution:

- a) Si λ est une valeur propre de A, alors λ^2 est une valeur propre de A^2 . Or la seule valeur propre de A^2 est 3, donc $\lambda^2 = 3$ donne les seules valeurs propres possibles de $A: \pm \sqrt{3}$.
- b) En factorisant $A^2 + 2A + I_n = (A + I_n)^2 = 0$, nous avons directement $\det(A + I_n) = 0$, donc -1 est une valeur propre de A.

Question 7

Diagonaliser les matrices suivantes sous la forme $P^TAP = D$, avec P une matrice orthogonale.

a)
$$A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & 1 \\ 3 & 1 & 1 \end{pmatrix}$$
, b) $A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Solution:

a) A est une matrice symétrique réelle, elle est donc diagonalisable en base orthonormale d'après le théorème spectral. On trouve après calculs

$$D = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \end{pmatrix}, \quad P = \begin{pmatrix} 1/\sqrt{3} & 1/\sqrt{6} & -1/\sqrt{2} \\ 1/\sqrt{3} & -2/\sqrt{6} & 0 \\ 1/\sqrt{3} & 1/\sqrt{6} & 1/\sqrt{2} \end{pmatrix}.$$

b) De même, A est une matrice symétrique réelle, elle est donc diagonalisable en base orthonormale d'après le théorème spectral. On trouve après calculs

$$D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad P = \begin{pmatrix} -1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Question 8

Les données suivantes décrivent le potentiel dans un câble électrique en fonction de la température du câble.

i	T_i [°C]	U_i [V]
1	0	-2
2	5	-1
3	10	0
4	15	1
5	20	2
6	25	4

On suppose que le potentiel suit la loi $U = a + bT + cT^2$. Calculer a, b, c au sens des moindres carrés.

Solution: Le système linéaire s'écrit
$$A \begin{pmatrix} a \\ b \\ c \end{pmatrix} = U$$
 avec $U = \begin{pmatrix} U_1 \\ U_2 \\ U_3 \\ U_4 \\ U_5 \\ U_6 \end{pmatrix} = \begin{pmatrix} -2 \\ -1 \\ 0 \\ 1 \\ 2 \\ 4 \end{pmatrix}$

et A est donnée par

$$A = \begin{pmatrix} 1 & T_1 & T_1^2 \\ 1 & \vdots & \vdots \\ 1 & & & \\ 1 & & & \\ 1 & \vdots & \vdots \\ 1 & T_6 & T_c^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 5 & 25 \\ 1 & 10 & 100 \\ 1 & 15 & 225 \\ 1 & 20 & 400 \\ 1 & 25 & 625 \end{pmatrix}.$$

Pour résoudre ce système et trouver a,b,c au sens des moindres carrés, on considère l'équation normale $A^TA\begin{pmatrix} a\\b\\c\end{pmatrix}=A^TU$. Après calculs on trouve

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -\frac{53}{28} \\ \frac{39}{280} \\ \frac{1}{280} \end{pmatrix} \approx \begin{pmatrix} -1.89 \\ 0.139 \\ 0.00357 \end{pmatrix}.$$

Le graphique suivant montre les données (en rouge) et la courbe d'interpolation (bleue) obtenue au sens des moindres carrés.

