Série 12

Mots-clés: Produit scalaire, norme, orthogonalité, complément orthogonal, projection orthogonale.

Rappel: Soient $\vec{v} = (v_1, \dots v_n), \vec{w} = (w_1, \dots w_n) \in \mathbb{R}^n$ et $W \subset \mathbb{R}^n$ un sous-espace vectoriel

• Le produit scalaire de \vec{v} et \vec{w} est

$$\vec{v} \cdot \vec{w} = v_1 w_1 + \dots + v_n w_n.$$

• La **norme** de \vec{v} est

$$||\vec{v}|| = \sqrt{\vec{v} \cdot \vec{v}} = \sqrt{v_1^2 + \dots + v_n^2}.$$

- \vec{v} et \vec{w} sont **orthogonaux** si $\vec{v} \cdot \vec{w} = 0$.
- Le complément orthogonal de W est l'ensemble

$$W^{\perp} = \{ \vec{v} \in \mathbb{R}^n : \vec{v} \cdot \vec{w} = 0, \ \forall \vec{w} \in W \}.$$

• Si $A \in M_{m \times n}$, alors $\operatorname{Im}(A)^{\perp} = \operatorname{Ker}(A^T)$.

Question 1 Démontrer que si W est un s.e.v de \mathbb{R}^n , alors W^{\perp} est aussi un s.e.v de \mathbb{R}^n .

Solution: Nous vérifions les deux propriétés de la caractérisation simplifiée des sous-espaces vectoriels.

- (1) Le vecteur nul appartient à W^{\perp} , car il est orthogonal à tout vecteur de \mathbb{R}^n $(\vec{0} \cdot \vec{v} = 0)$.
- (2) Soient $\vec{u}, \vec{v} \in W^{\perp}$ et $\lambda \in \mathbb{R}$. Alors pour tout $\vec{w} \in W$,

$$(\vec{u} + \lambda \vec{v}) \cdot \vec{w} = \vec{u} \cdot \vec{w} + \lambda (\vec{v} \cdot \vec{w}) = 0 + \lambda 0 = 0.$$

Donc $\vec{u} + \lambda \vec{v} \in W^{\perp}$.

Question 2

a) Soient
$$\vec{u} = \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix}$$
, $\vec{v} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$, $\vec{w} = \begin{pmatrix} 5 \\ 6 \\ 0 \end{pmatrix}$. Calculer
$$\vec{u} \cdot \vec{v}, \quad \vec{v} \cdot \vec{w}, \quad \frac{\vec{u} \cdot \vec{w}}{\|\vec{v}\|}, \quad \frac{1}{\vec{w} \cdot \vec{w}} \vec{w}, \quad \frac{\vec{u} \cdot \vec{w}}{\|\vec{v}\|} \vec{v}.$$

- b) Calculer la distance entre \vec{u} et \vec{v} et la distance entre \vec{u} et \vec{v} .
- c) Calculer les vecteurs unitaires correspondant à $\vec{u}, \vec{v}, \vec{w}$ (pointant dans la même direction que le vecteur original).

Solution:

a)
$$\vec{u} \cdot \vec{v} = 7$$
, $\vec{v} \cdot \vec{w} = 10$, $\frac{\vec{u} \cdot \vec{w}}{\|\vec{v}\|} = \frac{39}{\sqrt{5}}$, $\frac{1}{\vec{w} \cdot \vec{w}} \vec{w} = \frac{1}{61} \begin{pmatrix} 5 \\ 6 \\ 0 \end{pmatrix}$, $\frac{\vec{u} \cdot \vec{w}}{\|\vec{v}\|} \vec{v} = \frac{39}{\sqrt{5}} \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$.

b)
$$\|\vec{u} - \vec{v}\| = \sqrt{17}, \|\vec{u} - \vec{w}\| = 3.$$

c) Notation: pour $\vec{v} \in \mathbb{R}^n$ on pose $\widetilde{v} = \frac{\vec{v}}{\|\vec{v}\|}$ le vecteur unitaire correspondant.

Alors
$$\widetilde{u} = \frac{1}{\sqrt{26}} \begin{pmatrix} 3\\4\\1 \end{pmatrix}$$
, $\widetilde{v} = \frac{1}{\sqrt{5}} \begin{pmatrix} 2\\0\\1 \end{pmatrix}$, $\widetilde{w} = \frac{1}{\sqrt{61}} \begin{pmatrix} 5\\6\\0 \end{pmatrix}$.

Question 3 Soient $u, v \in \mathbb{R}^n$ tels que ||u|| = 2, ||v|| = 3 et $u \cdot v = 5$.

- a) Calculer le produit scalaire de u 2v et 3u + v.
- b) Calculer le produit scalaire de au + bv et bu + av où $a, b \in \mathbb{R}$.
- c) Trouver toutes les valeurs des paramètres a et b telles que les vecteurs au+bv et bu+av soient orthogonaux.

Solution:

- a) On calcule en utilisant la distributivité du produit scalaire par rapport à la somme de vecteurs: $(u-2v)\cdot(3u+v)=3u\cdot u-5u\cdot v-2v\cdot v=3\|u\|^2-5u\cdot v-2\|v\|^2=3\cdot 4-5\cdot 5-2\cdot 9=-31.$
- b) $(au + bv) \cdot (bu + av) = ab(u \cdot u) + (a^2 + b^2)(u \cdot v) + ab(v \cdot v) = 13ab + 5a^2 + 5b^2$

c) Deux vecteurs sont orthogonaux si et seulement si leur produit scalaire est nul. Donc, les vecteurs sont orthogonaux si et seulement si a,b vérifient $5a^2+5b^2+13ab=0$. On pose alors a=t et on résoud l'équation du second degré $5b^2+13tb+5t^2=0$ pour trouver $b=\frac{-13t\pm\sqrt{69t^2}}{10}$.

Question 4 Pour tous les sous-espaces suivants, donner une base du complément orthogonal :

$$W_1 = \operatorname{Span} \left\{ \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} \right\}, \quad W_2 = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \right\},$$

$$W_3 = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}, \quad W_4 = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ -2 \\ 1 \end{pmatrix} \right\}.$$

Solution:

1) Par définition,

$$W_1^{\perp} = \left\{ w = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3 \,\middle|\, 3a + 2b + c = 0 \right\} = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ -3 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix} \right\}.$$

2) Par la formule du cours, $W_2^\perp={\rm Ker}\begin{pmatrix}1&2&1\\1&-1&0\end{pmatrix}$. Sa forme échelonnée réduite est

$$\begin{pmatrix} 1 & -1 & 0 \\ 0 & 3 & 1 \end{pmatrix} \implies W_2^{\perp} = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 1 \\ -3 \end{pmatrix} \right\}.$$

3) Par un résultat du cours, nous avons que

$$\dim(W_3^{\perp}) = 3 - \dim(W_3) = 0.$$

Ainsi, $W_3^{\perp} = \{\vec{0}\}.$

4) Par la formule du cours, $W_4^{\perp} = \operatorname{Ker} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & -2 & 1 \end{pmatrix}$. Sa forme échelonnée réduite est

$$\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & -2 & 0 \end{pmatrix} \implies W_4^{\perp} = \operatorname{Span} \left\{ \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 1 \\ 0 \end{pmatrix} \right\}.$$

Question 5 Soit $A = \begin{pmatrix} 1 & -1 & 1 \\ -2 & 2 & 3 \\ -1 & 1 & 4 \end{pmatrix}$ et U = Ker(A). Alors U^{\perp} est égal à

Solution: Nous avons vu en cours que $\operatorname{Im}(A)^{\perp} = \operatorname{Ker}(A^T)$, donc $\operatorname{Ker}(A)^{\perp} = \operatorname{Im}(A^T)$.

Rappel:

• Une famille/base de vecteurs $\{\vec{v}_1,\ldots,\vec{v}_k\}$ est orthogonale si

$$\vec{v}_i \cdot \vec{v}_j = 0, \ \forall i \neq j.$$

Elle est **orthonormale** si, de plus, $||\vec{v}_i|| = 1$, $\forall i$.

• La **projection orthogonale** de $\vec{v} \in \mathbb{R}^n$ sur un sous-espace $W \subset \mathbb{R}^n$ est le vecteur $\operatorname{proj}_W(v) \in \mathbb{R}^n$ satiafaisant

$$\operatorname{proj}_W(\vec{v}) \in W \quad \text{et} \quad \vec{v} - \operatorname{proj}_W(\vec{v}) \in W^{\perp}.$$

• Si $\{\vec{u}_1,\ldots,\vec{u}_k\}$ est une base orthogonale de W, alors on a la formule

$$\operatorname{proj}_{W}(\vec{v}) = \frac{\vec{v} \cdot \vec{u}_{1}}{||\vec{u}_{1}||^{2}} \vec{u}_{1} + \dots + \frac{\vec{v} \cdot \vec{u}_{k}}{||\vec{u}_{k}||^{2}} \vec{u}_{k}.$$

Question 6 Soient $u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $u_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $v = \begin{pmatrix} 3 \\ 0 \\ 3 \end{pmatrix} \in \mathbb{R}^3$.

a) Les vecteurs u_1 et u_2 sont orthogonaux.

VRAI FAUX

b) Soit $W = \text{Span}\{u_1, u_2\}$. Calculer $\text{proj}_W(v)$.

 $\square \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \qquad \square \begin{pmatrix} 7/4 \\ 1/4 \\ 1 \end{pmatrix} \qquad \blacksquare \begin{pmatrix} 7/2 \\ 1/2 \\ 2 \end{pmatrix} \qquad \square \begin{pmatrix} 7 \\ 1 \\ 4 \end{pmatrix}$

c) Calculer $v - \operatorname{proj}_W(v)$.

 $\square \begin{pmatrix} 1/2 \\ 1/2 \\ -1 \end{pmatrix} \qquad \square \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix} \qquad \square \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} \qquad \blacksquare \begin{pmatrix} -1/2 \\ -1/2 \\ 1 \end{pmatrix}$

Solution:

- a) Un calcul direct donne $u_1 \cdot u_2 = 1 \cdot (-1) + 1 \cdot 1 + 1 \cdot 0 = 0$.
- b) Comme u_1 et u_2 sont orthogonaux on peut utiliser la formule vue en cours:

$$\operatorname{proj}_{W}(v) = \frac{v \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1} + \frac{v \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2} = \frac{6}{3} u_{1} + \frac{-3}{2} u_{2} = 2 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \frac{3}{2} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{7}{2} \\ \frac{1}{2} \\ 2 \end{pmatrix}.$$

c) Suite au calcul dans b), $z = v - \operatorname{proj}_W(v) = \begin{pmatrix} -1/2 \\ -1/2 \\ 1 \end{pmatrix}$.

Question 7 Soient les vecteurs $v = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$, $w_1 = \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix}$, $w_2 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$.

Calculer $\operatorname{proj}_W(v)$, avec $W = \operatorname{Span}\{w_1, w_2\}$.

$$\square \begin{pmatrix} 4 \\ 1 \\ 5 \end{pmatrix} \qquad \square \begin{pmatrix} -4/3 \\ -1/3 \\ -5/3 \end{pmatrix} \qquad \square \begin{pmatrix} 2/3 \\ 1/3 \\ 5/3 \end{pmatrix} \qquad \blacksquare \begin{pmatrix} 4/3 \\ 1/3 \\ 5/3 \end{pmatrix}$$

Solution: Attention, ici w_1 et w_2 ne sont pas orthogonaux $(w_1 \cdot w_2 \neq 0)$, on ne peut donc pas utiliser la formule comme à l'exercice ci-dessus. On utilise donc la définition de projection orthogonale: La projection orthogonale $\operatorname{proj}_W(v)$ est le seul vecteur w vérifiant $w \in W$ et $v - w \in W^{\perp}$:

$$\begin{cases} (w-v) \cdot w_1 = 0 \\ (w-v) \cdot w_2 = 0 \end{cases} \Leftrightarrow \begin{cases} \alpha w_1 \cdot w_1 + \beta w_2 \cdot w_1 = v \cdot w_1 \\ \alpha w_1 \cdot w_2 + \beta w_2 \cdot w_2 = v \cdot w_2 \end{cases} \Leftrightarrow \begin{cases} 8\alpha + 6\beta = 4 \\ 6\alpha + 6\beta = 5 \end{cases}.$$

La solution est $\alpha = -1/2$, $\beta = 4/3$. Par conséquent,

$$w = -\frac{1}{2}w_1 + \frac{4}{3}w_2 = \begin{pmatrix} 4/3\\1/3\\5/3 \end{pmatrix}.$$

Question 8 Considérons les vecteurs de \mathbb{R}^4 suivants

$$v = \begin{pmatrix} 2\\4\\0\\-1 \end{pmatrix}, \quad w_1 = \begin{pmatrix} 2\\0\\-1\\-3 \end{pmatrix}, \quad w_2 = \begin{pmatrix} 5\\-2\\4\\2 \end{pmatrix}$$

et $W = \operatorname{Span}\{w_1, w_2\}.$

- a) Calculer $\operatorname{proj}_W(v)$
- b) Calculer la distance entre v et W.

Solution:

a) On remarque que les vecteurs w_1 et w_2 sont orthogonaux. On peut ainsi facilement calculer la projection orthogonale grâce à la formule $\operatorname{proj}_W(v) = \frac{v \cdot w_1}{w_1 \cdot w_1} w_1 + \frac{v \cdot w_2}{w_2 \cdot w_2} w_2$ ce qui nous fournit directement les coefficients α et β . On

trouve
$$\alpha = 1/2$$
 et $\beta = 0$ et donc $\operatorname{proj}_W(v) = \begin{pmatrix} 1 \\ 0 \\ -\frac{1}{2} \\ -\frac{3}{2} \end{pmatrix}$.

b) La distance entre v et W est donnée par $||v - \operatorname{proj}_W(v)|| = \sqrt{\frac{35}{2}}$.

Question 9 Soient $\{u_1, \ldots, u_n\}$ et $\{v_1, \ldots, v_n\}$ deux bases orthonormales de \mathbb{R}^n . On définit les matrices

$$U = (u_1 \ldots u_n), \ V = (v_1 \ldots v_n) \in M_{n \times n}.$$

Montrer que $U^TU=I_n,\,V^TV=I_n$ et que UV est inversible.

N.B. Une matrice $U \in M_{n \times n}$ est dite **orthogonale** si $U^T U = I_n$.

Solution:

$$U^{T}U = \begin{pmatrix} u_{1}^{T} \\ u_{2}^{T} \\ \vdots \\ u_{n}^{T} \end{pmatrix} \begin{pmatrix} u_{1} & u_{2} & \cdots & u_{n} \end{pmatrix} = \begin{pmatrix} u_{1}^{T}u_{1} & u_{1}^{T}u_{2} & \cdots & u_{1}^{T}u_{n} \\ u_{2}^{T}u_{1} & u_{2}^{T}u_{2} & \cdots & u_{2}^{T}u_{n} \\ \vdots & \vdots & \vdots & \vdots \\ u_{n}^{T}u_{1} & u_{n}^{T}u_{2} & \cdots & u_{n}^{T}u_{n} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} = I_n.$$

Comme v_1, \ldots, v_n vérifient les mêmes hypothèses, on a également $V^TV = I_n$. UV est inversible car $V^TU^TUV = V^TV = I_n$, d'où $(UV)^{-1} = V^TU^T$.

Question 10 Soit
$$A = \begin{pmatrix} \sqrt{2} & -\sqrt{3} & 1 \\ \sqrt{2} & \sqrt{3} & 1 \\ \sqrt{2} & 0 & -2 \end{pmatrix}$$
. Alors

- \square A n'est pas inversible \square $A^TA = I_3$
- $\frac{A}{\sqrt{6}}$ est orthogonale A est orthogonale

Solution: Les colonnes de A sont orthogonales mais pas orthonormées. Un simple calcul donne $A^TA=6I_3$, donc $\frac{A}{\sqrt{6}}$ est orthogonale.

Question 11

br	èvement votre réponse.	
a)	Une base d'un sous-espace vectoriel W de \mathbb{R}^n qui est un ensemble de vecteur orthogonaux est une base orthonormale.	rs
	☐ VRAI ■ FAUX	
b)	Un ensemble $S=\{v_1,v_2,\dots,v_p\}$ orthogonal de vecteurs non nuls de \mathbb{R}^n es linéairement indépendant et de ce fait est une base du sous-espace qu'il er gendre.	
	VRAI FAUX	
c)	Une base orthonormale est une base orthogonale mais la réciproque est fauss en général.	se
	VRAI FAUX	
d)	Si x n'appartient pas au sous-espace vectoriel $W,$ alors $x-\operatorname{proj}_W(x)$ n'est panul.	ıs
	VRAI FAUX	
e)	Tout ensemble orthonormal de \mathbb{R}^n est linéairement dépendant.	
	☐ VRAI ■ FAUX	
f)	Soit W un sous-espace vectoriel de \mathbb{R}^n . Si v est dans W et dans W^{\perp} , alor $v=0$.	rs
	VRAI FAUX	
So	lution:	

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier

Solution:

- a) Faux. Pour que des vecteurs forment une base orthonormale il faut qu'ils soient de norme 1 (en plus d'être orthogonaux deux à deux).
- b) Vrai. Deux vecteurs orthogonaux non nuls sont linéairement indépendants.
- c) Vrai. Dans une base orthonormale (b_1, \ldots, b_n) les vecteurs sont deux à deux orthogonaux et non nuls (car ils ont une norme égale à 1), donc linéairement indépendants. Il s'agit donc aussi d'une base orthogonale.

- d) Vrai. Si $x \operatorname{proj}_W(x) = 0$ cela signifie que $x = \operatorname{proj}_W(x)$ et donc $x \in W$.
- e) Faux. Un ensemble orthonormal possède des vecteurs 2 à 2 orthogonaux et non nuls (car de norme 1). Ces vecteurs sont donc linéairement indépendants!
- f) Vrai. Si $w \in W \cap W^{\perp}$ alors $w \cdot w = 0$ et donc w = 0.

Question 12

Pour tout $\vec{u}, \vec{v} \in \mathbb{R}^n$, montrer les proposition suivantes :

- a) Si $\{\vec{u}, \vec{v}\}$ est une famille orthonormale, alors $||\vec{u} \vec{v}|| = \sqrt{2}$.
- b) $\vec{u} \cdot \vec{v} = \frac{1}{4} (\|\vec{u} + \vec{v}\|^2 \|\vec{u} \vec{v}\|^2)$
- c) $\|\vec{u} + \vec{v}\|^2 + \|\vec{u} \vec{v}\|^2 = 2(\|\vec{u}\|^2 + \|\vec{v}\|^2)$
- d) Le théorème de Pythagore : si \vec{u}, \vec{v} sont orthogonaux, alors

$$\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2.$$

Solution:

- a) $\|\vec{u} \vec{v}\|^2 = (\vec{u} \vec{v}) \cdot (\vec{u} \vec{v}) = \vec{u} \cdot \vec{u} 2\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{v} = \|\vec{u}\|^2 2\vec{u} \cdot \vec{v} + \|\vec{v}\|^2 = 1 0 + 1 = 2,$ donc $\|\vec{u} \vec{v}\| = \sqrt{2}.$
- b) $\|\vec{u} + \vec{v}\|^2 \|\vec{u} \vec{v}\|^2 = (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) (\vec{u} \vec{v}) \cdot (\vec{u} \vec{v}) = \vec{u} \cdot \vec{u} + 2\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{v} \vec{u} \cdot \vec{u} + 2\vec{u} \cdot \vec{v} \vec{v} \cdot \vec{v} = 4\vec{u} \cdot \vec{v}.$
- c) $\|\vec{u} + \vec{v}\|^2 + \|\vec{u} \vec{v}\|^2 = (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) + (\vec{u} \vec{v}) \cdot (\vec{u} \vec{v}) = \vec{u} \cdot \vec{u} + 2\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{v} + \vec{u} \cdot \vec{u} 2\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{v} = 2\vec{u} \cdot \vec{u} + 2\vec{v} \cdot \vec{v} = 2\|\vec{u}\|^2 + 2\|\vec{v}\|^2.$ Remarque: l'égalité c) s'appelle "identité du parallélogramme".
- d) Si \vec{u} , \vec{v} sont orthogonaux, alors par (b),

$$\|\vec{u} + \vec{v}\|^2 = \|\vec{u} - \vec{v}\|^2,$$

et par (c), on a directement le résultat.