Série 11

Mots-clés: Valeurs propres, vecteurs propres, espaces propres, diagonalisation.

Rappel: Soit $A \in M_{n \times n}$.

• Un scalaire $\lambda \in \mathbb{R}$ est une valeur propre de \mathbf{A} et un vecteur $\vec{v} \in \mathbb{R}^n$, $\vec{v} \neq \vec{0}$ est un vecteur propre associé à λ si

$$A\vec{v} = \lambda \vec{v}$$
.

• Les valeurs propres sont les racines du polynôme caractéristique

$$P_A(\lambda) = \det(A - \lambda I_n).$$

• L'espace propre associé à une valeur propre λ est le sous-espace vectoriel

$$E_{\lambda} = \operatorname{Ker}(A - \lambda I_n) = \{ \vec{v} \in \mathbb{R}^n : A\vec{v} = \lambda \vec{v} \}.$$

 \bullet A est diagonalisable si et seulement si elle admet n vecteurs propres linéairement indépendants. On peut alors écrire

$$A = PDP^{-1}$$
 avec $P = (\vec{v}_1 \dots \vec{v}_n), D = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots \\ 0 & \lambda_n \end{pmatrix}$

où λ_i est une valeur propre et \vec{v}_i est un vecteur propre associé.

Question 1 Soit $A = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$. Calculer les valeurs propres et espaces propres de A.

Solution: Nous posons le polynôme caractéristique

$$P_A(\lambda) = \det(A - \lambda I_2) = \begin{vmatrix} 1 - \lambda & 3 \\ 3 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^2 - 3^2 = (\lambda + 2)(\lambda - 4).$$

On en conclut que les valeurs cherchées sont $\lambda_1 = -2$ et $\lambda = 4$. Pour $\lambda_1 = -2$, ses vecteurs propres sont donnés par l'équation

$$(A+2I_2)\vec{v} = \begin{pmatrix} 3 & 3 \\ 3 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \implies x = -y \implies E_{-2} = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}.$$

De même, pour $\lambda_2 = 4$,

$$(A+2I_2)\vec{v} = \begin{pmatrix} -3 & 3 \\ 3 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Longrightarrow \quad x = y \quad \Longrightarrow \quad E_4 = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}.$$

Question 2

On considère la matrice $A = \begin{pmatrix} -15 & 1 & -9 \\ 0 & 6 & 0 \\ 4 & 1 & 3 \end{pmatrix}$.

a) Est-ce que $\lambda = 6$ est une valeur propre de A?

b) Est-ce que $\lambda = 1$ et $\lambda = -9$ sont des valeurs propres de A?

Solution:

- a) En calculant $A 6I_3$, on obtient une matrice dont la seconde ligne est nulle, donc de déterminant nul. Par conséquent, 6 est une valeur propre.
- b) On calcule:

$$A - I_3 = \begin{pmatrix} -16 & 1 & -9 \\ 0 & 5 & 0 \\ 4 & 1 & 2 \end{pmatrix}, \qquad A + 9I_3 = \begin{pmatrix} -6 & 1 & -9 \\ 0 & 15 & 0 \\ 4 & 1 & 12 \end{pmatrix}.$$

Les déterminants de ces matrices (en développant par rapport à la deuxième ligne) sont respectivement $5 \cdot (-16 \cdot 2 + 4 \cdot 9)$ et $15 \cdot (-6 \cdot 12 + 4 \cdot 9)$. Ils sont non nuls, par conséquent ces matrices sont inversibles, et ni 1 ni -9 ne sont des valeurs propres.

Question 3

Soit A la matrice $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$. Montrer que 0 est une valeur propre de A et calculer l'espace propre associé..

Solution: Toutes les colonnes sont proportionnelles, par conséquent A est singulière et 0 est une valeur propre. L'espace propre E_0 est donc

$$E_0 = \operatorname{Ker}(A) = \{ \overrightarrow{x} \in \mathbb{R}^3 \mid x_1 + 2x_2 + 3x_3 = 0 \} = \operatorname{Span} \left\{ \begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} \right\}.$$

Question 4 Soit A de taille 3×3 inversible et λ une valeur propre de A. Alors λ est une valeur propre de A^{-1} . Alors λ est une valeur propre de -A. Alors λ^{-1} est une valeur propre de A^{-1} . Alors λ^{-1} est une valeur propre de -A. **Solution:** Alors λ^{-1} est une valeur propre de A^{-1} . En effet, si \overrightarrow{x} est un vecteur propre de la matrice A pour la valeur propre λ , on a $A\overrightarrow{x} = \lambda \overrightarrow{x}$. Multiplions cette égalité à gauche par la matrice inverse A^{-1} : $\overrightarrow{x} = A^{-1}A\overrightarrow{x} = A^{-1}\lambda\overrightarrow{x} = \lambda A^{-1}\overrightarrow{x}$ Ainsi, en divisant par λ (on le peut car $\lambda \neq 0$ puisque A est inversible!), on conclut que l'inverse de λ est une valeur propre de l'inverse de A, pour le même vecteur propre! Il n'y a aucune raison pour que λ soit une valeur propre de A^{-1} et pour que λ ou λ^{-1} soit une valeur propre de -A. Pensons en effet à la matrice 2I dont la seule valeur propre est 2. Par contre, il est vrai que $-\lambda$ est une valeur propre de -A puisque si \overrightarrow{x} est un vecteur propre de A pour la valeur propre λ , alors $(-A)\overrightarrow{x} = -A\overrightarrow{x} = -\lambda \overrightarrow{x}$. Question 5 Soit A une matrice de taille 2×2 qui n'est pas inversible. Alors

Solution: 0 est une valeur propre de A.

0 est une valeur propre de A.

A est la matrice nulle.

A n'a pas de valeur propre réelle.

tout vecteur de \mathbb{R}^2 est un vecteur propre de A.

Comme $A = A - 0 \cdot I_2$ n'est pas inversible, le système $A\overrightarrow{x} = 0$ admet une solution non nulle. Autrement dit, 0 est une valeur propre de A. En particulier, cela implique que A a une valeur propre réelle. Ensuite, considérer la matrice $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ qui n'est pas inversible et non nulle. Finalement, $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ n'est pas un vecteur propre de A, par exemple.

Question 6

Soit A une matrice de taille $n \times n$ et $k \geq 2$ un entier. Vérifier que si λ est une valeur propre de A avec pour vecteur propre \vec{v} , alors λ^k est une valeur propre de

$$A^k = \underbrace{A A \cdots A}_{k \text{ fois}}$$

avec pour vecteur propre \vec{v} .

Solution: Par définition, on a $A\vec{v}=\lambda\vec{v}$. Par récurrence sur k, on montre $A^k\vec{v}=\lambda^k\vec{v}$. Supposons le résultat vrai au rang k-1, c-à-d $A^{k-1}\vec{v}=\lambda^{k-1}\vec{v}$. On a alors:

$$A^k \vec{v} = A(A^{k-1} \vec{v}) = A(\lambda^{k-1} \vec{v}) = \lambda^{k-1} A \vec{v} = \lambda^{k-1} \lambda \vec{v} = \lambda^k \vec{v}.$$

Ceci montre que le vecteur \vec{v} , non nul, est un vecteur propre de la matrice A^k associé à la valeur propre λ^k .

Question 7

Soient $n \geq 2$ et $k \geq 2$ entiers.

a) Il existe une matrice diagonale qui n'est pas diagonalisable.

VRAI FAUX

b) La matrice $n \times n$ nulle est diagonalisable.

VRAI FAUX

c) Toute matrice triangulaire supérieure est diagonalisable.

VRAI FAUX

d) Si A est une matrice $n \times n$ diagonalisable, alors A^k est diagonalisable.

VRAI FAUX

e) Si A est une matrice $n \times n$ et A^k est diagonalisable, alors A est diagonalisable.

VRAI FAUX

Solution:

a) Une matrice diagonale est trivialement diagonalisable, avec $P = I_n$.

- b) La matrice nulle est par définition diagonale, donc diagonalisable.
- c) La matrice $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ n'est pas diagonalisable, car elle n'admet que 0 comme valeur propre (de multiplicité algébrique 2), mais son seul espace propre $E_0 = \text{Ker}(A)$ est de dimension 1. Il manque donc un vecteur propre.
- d) L'affirmation est vraie. Si A est diagonalisable, alors il existe P une matrice $n \times n$ inversible et D une matrice $n \times n$ diagonale telles que $P^{-1}AP = D$. Alors, on a

$$P^{-1}A^kP = P^{-1}APP^{-1}AP \dots P^{-1}AP = DD \dots D = D^k$$

et comme D^k est diagonale, A^k est bien diagonalisable.

e) Il suffit de reprendre $A=\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ qui n'est pas diagonalisable, mais A^2 est nulle et diagonalisable.

Question 8

Soient

$$A = \begin{pmatrix} 1 & -1 \\ -4 & 1 \end{pmatrix}, \quad P = \begin{pmatrix} 1 & 1 \\ -2 & 2 \end{pmatrix}, \quad D = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix}.$$

- a) Montrer que $A = PDP^{-1}$ et en déduire les valeurs propres et espaces propres de A.
- b) Donner une expression pour A^n .

Solution:

a) On vérifie en effet que

$$P^{-1} = \frac{1}{4} \begin{pmatrix} 2 & -1 \\ 2 & 1 \end{pmatrix} \,,$$

et donc

$$PDP^{-1} = \begin{pmatrix} 1 & 1 \\ -2 & 2 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix} \frac{1}{4} \begin{pmatrix} 2 & -1 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ -4 & 1 \end{pmatrix} = A.$$

Nous en déduisons les valeurs propres $\lambda_1=3$ et $\lambda_2=-1$, ainsi que les espaces propres

$$E_3 = \operatorname{Span}\left\{ \begin{pmatrix} 1 \\ -2 \end{pmatrix} \right\}, \quad E_{-1} = \operatorname{Span}\left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}$$

$$A^{n} = \begin{pmatrix} 1 & 1 \\ -2 & 2 \end{pmatrix} \begin{pmatrix} 3^{n} & 0 \\ 0 & (-1)^{n} \end{pmatrix} \frac{1}{4} \begin{pmatrix} 2 & -1 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} \frac{3^{n} + (-1)^{n}}{2} & \frac{(-1)^{n} - 3^{n}}{4} \\ (-1)^{n} - 3^{n} & \frac{3^{n} + (-1)^{n}}{2} \end{pmatrix}.$$

Question 9 Soit $A = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}$.

- a) Calculer les valeurs propres et espaces propres de A.
- b) Donner une expression de A^k .

Solution:

a) Un simple calcul nous donne le polynôme caractéristique de A:

$$P_A(t) = (t+1)(t-5)$$
.

Les valeurs propres de A sont donc $\lambda_1=-1,\ \lambda_2=5$. On cherche ensuite les vecteurs propres associés à $\lambda_1=-1,$ c'est-à-dire les vecteurs \vec{v} satisfaisant $A\vec{v}=\lambda_1\vec{v}$, en résolvant

$$\begin{pmatrix} 2 & 4 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \implies x_1 + 2x_2 = 0 \implies E_{-1} = \operatorname{Span} \left\{ \begin{pmatrix} -2 \\ 1 \end{pmatrix} \right\}$$

On trouve de même que tous les vecteurs propres associés à $\lambda_2=5$:

$$\begin{pmatrix} -4 & 4 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \implies -x_1 + x_2 = 0 \implies E_5 = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$$

b) Soit $P = \begin{pmatrix} -2 & 1 \\ 1 & 1 \end{pmatrix}$. Alors $P^{-1} = \frac{1}{3} \begin{pmatrix} -1 & 1 \\ 1 & 2 \end{pmatrix}$.

Par la formule de diagonalisation,

$$A = PDP^{-1} \implies A^k = PD^kP^{-1}\frac{1}{3}\begin{pmatrix} -2 & 1\\ 1 & 1 \end{pmatrix}\begin{pmatrix} (-1)^k & 0\\ 0 & 5^k \end{pmatrix}\begin{pmatrix} -1 & 1\\ 1 & 2 \end{pmatrix} = \frac{1}{3}\begin{pmatrix} 5^k + 2 & 2 \cdot 5^k - 2\\ 5^k - 1 & 2 \cdot 5^k + 1 \end{pmatrix}$$

Question 10

Pour les matrices suivantes, calculer les valeurs propres et espaces propres, et déterminer celles qui sont diagonalisables:

$$A = \begin{pmatrix} 4 & 1 \\ -1 & 1 \end{pmatrix}, B = \begin{pmatrix} 4 & 2 \\ 0 & 4 \end{pmatrix},$$

$$C = \begin{pmatrix} 4 & 0 & 0 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix}, D = \begin{pmatrix} -1 & 5 & 2 \\ 5 & -1 & 2 \\ 2 & 2 & 2 \end{pmatrix}.$$

Solution:

A) Le polynôme caractéristique de A est $\lambda^2 - 5\lambda + 5$. Les valeurs propres de A sont $\lambda_1 = \frac{5+\sqrt{5}}{2}$, $\lambda_2 = \frac{5-\sqrt{5}}{2}$.

Le premier espace propre est donné par l'équation $A\vec{v} = \lambda_1 \vec{v}$, qui correspond à

$$\begin{pmatrix} 4 - \frac{5+\sqrt{5}}{2} & 1\\ -1 & 1 - \frac{5+\sqrt{5}}{2} \end{pmatrix} \sim \begin{pmatrix} 1 & \frac{3+\sqrt{5}}{2}\\ 0 & 0 \end{pmatrix}$$

et donc

$$E_{\lambda_1} = \operatorname{Span}\left\{ \begin{pmatrix} \frac{3+\sqrt{5}}{2} \\ 1 \end{pmatrix} \right\}.$$

Similairement, le second espace propres est

$$E_{\lambda_2} = \operatorname{Span}\left\{ \begin{pmatrix} \frac{-3+\sqrt{5}}{2} \\ 1 \end{pmatrix} \right\}.$$

Il y a deux vecteurs propres indépendants, donc A est diagonalisable.

B) Le polynôme caractéristique de B est $(\lambda - 4)^2$. La seule valeur propre de B est 4, qui de multiplicité 2.

L'espace propre correspondant est

$$E_4 = \operatorname{Span}\left\{ \begin{pmatrix} 1\\0 \end{pmatrix} \right\}.$$

L'espace propre est de dimension seulement 1. Il manque donc un vecteur propre et la matrice n'est pas diagonalisable.

C) La matrice C étant triangulaire inférieure, son polynôme caractéristique est directement donné par

$$P_C(\lambda) = (4 - \lambda)(1 - \lambda)^2$$

. Les valeurs propres de C sont $\{4,1,1\}$ c-à-d les coefficients diagonaux de la matrice triangulaire.

Les espaces propres correspondants sont

$$E_4 = \operatorname{Span}\left\{ \begin{pmatrix} -3\\2\\2 \end{pmatrix} \right\}, \ E_1 = \operatorname{Span}\left\{ \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}.$$

Les espaces propres donnent 3 vecteurs propres indépendants, donc C est diagonalisable.

D) Nous calculons le polynôme caractéristique en essayant de factoriser le déterminant et en faisant apparaître des zéros :

$$P_{D}(\lambda) = \begin{vmatrix} -1 - \lambda & 5 & 2 \\ 5 & -1 - \lambda & 2 \\ 2 & 2 & 2 - \lambda \end{vmatrix} = \begin{vmatrix} -6 - \lambda & 6 + \lambda & 0 \\ 5 & -1 - \lambda & 2 \\ 2 & 2 & 2 - \lambda \end{vmatrix} = \begin{vmatrix} -6 - \lambda & 0 & 0 \\ 5 & 4 - \lambda & 2 \\ 2 & 4 & 2 - \lambda \end{vmatrix}$$
$$= (-6 - \lambda) \begin{vmatrix} 4 - \lambda & 2 \\ 4 & 2 - \lambda \end{vmatrix} = (-6 - \lambda)[(4 - \lambda)(2 - \lambda) - 8] = -\lambda(6 + \lambda)(6 - \lambda).$$

Les valeurs propres de D sont donc $\{-6,0,6\}$. Les espaces propres correspondants sont

$$E_{-6} = \operatorname{Span}\left\{ \begin{pmatrix} -1\\1\\0 \end{pmatrix} \right\}, E_0 = \operatorname{Span}\left\{ \begin{pmatrix} 1\\1\\-2 \end{pmatrix} \right\}, E_6 = \operatorname{Span}\left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\}.$$

Les espaces propres donnent 3 vecteurs propres indépendants, donc D est diagonalisable.

Question 11 Soit A une matrice de taille $n \times n$. Indiquer si les affirmations suivantes sont vraies ou fausses (justifier).

a) A est diagonalisable si et seulement si elle possède n valeurs propres distinctes.

VRAI FAUX

b) Si A est diagonalisable, alors A est inversible.

VRAI FAUX

c) Si A est inversible, alors A est diagonalisable.

VRAI FAUX

d) Si 0 est valeur propre, alors $\operatorname{rg}(A) < n$.

VRAI FAUX

Solution:

a) Faux. En effet la matrice identité est diagonale donc diagonalisable, et pourtant sa seule valeur propre est 1.

- b) Faux. Méthode 1: La matrice nulle est diagonalisable mais non inversible. Méthode 2: On peut aussi proposer la matrice $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ diagonale donc diagonalisable, mais non inversible.
- c) Faux (pour $n \ge 2$). En effet, la matrice $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ est inversible, mais non diagonalisable, car l'espace propre associé à la valeur propre 1 (de multiplicité 2) est de dimension seulement 1.
- d) Vrai. Si 0 est valeur propre, la dimension du noyau est non nulle, et donc $\operatorname{rg}(A) = n \dim \operatorname{Ker} A < n$.

Question 12

Soit
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
.

- a) Trouver les valeurs propres et les espaces propres de A
- b) Montrer que A est diagonalisable et donner une formule pour A^k , pour tout $k \in \mathbb{N}$.

Solution:

a) On a $P_A(t) = \det \begin{pmatrix} 1-t & 1 & 1 \\ 1 & 1-t & 1 \\ 1 & 1 & 1-t \end{pmatrix} = \cdots = -t^2(t-3)$, donc les valeurs propres sont $\{0,3\}$. Les espaces propres sont

$$E_3 = \left\{ \begin{pmatrix} x \\ x \\ x \end{pmatrix} \middle| x \in \mathbb{R} \right\} = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$

et

$$E_{0} = \left\{ \begin{pmatrix} x \\ y \\ -x - y \end{pmatrix} \middle| x, y \in \mathbb{R} \right\} = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \right\}$$

b) Nous avons dim E_0 + dim E_3 = 2 + 1 = 3, ce qui prouve que A est bien diagonalisable. Si on prend P la matrice formée par les vecteurs propres de A trouvés ci-dessus (dans l'ordre) alors on a

$$P = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & -1 \end{pmatrix} \text{ et } P^{-1} = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 2 & -1 & -1 \\ -1 & 2 & -1 \end{pmatrix}$$

En prenant $D = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ (les valeurs propres sont placées sur la diagonale

selon l'ordre des vecteurs choisis au-dessus) on a $A = PDP^{-1}$ et donc $A^k = PD^kP^{-1}$ ou encore

$$A^k = P \begin{pmatrix} 3^k & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} P^{-1}.$$

En effectuant les calculs on obtient

$$A^{k} = P \begin{pmatrix} 3^{k-1} & 3^{k-1} & 3^{k-1} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 3^{k-1}A = \begin{pmatrix} 3^{k-1} & 3^{k-1} & 3^{k-1} \\ 3^{k-1} & 3^{k-1} & 3^{k-1} \\ 3^{k-1} & 3^{k-1} & 3^{k-1} \end{pmatrix}.$$

Remarque: Nous aurions pu trouver ce dernier résultat bien plus directement: il suffit de remarquer que $A^2 = 3A$ ce qui donne le résultat par récurrence.

Question 13 Soient $A, P \in M_{n \times n}$ avec P inversible et $\lambda \in \mathbb{R}$.

Démontrer que λ est une valeur propre de A si et seulement si λ est une valeur propre de $P^{-1}AP$.

Indication : simplifier $P^{-1}(\lambda I_n)P$ et travailler $\det(P^{-1}AP-\lambda I_n)$

 ${\bf NB}$: on dit que A et $B=P^{-1}AP$ sont des **matrices semblables**

Solution: Il suffit de montrer que

$$\det(A - \lambda I_n) = \det(P^{-1}AP - \lambda I_n).$$

Si l'un de ces déterminants est nul, alors l'autre le sera nécessairement. En écrivant

$$P^{-1}(\lambda I_n)P = \lambda(P^{-1}P) = \lambda I_n,$$

nous avons directement

$$\det(P^{-1}AP - \lambda I_n) = \det(P^{-1}AP - P^{-1}(\lambda I_n)P) = \det(P^{-1}(A - \lambda I_n)P)$$
$$= \det(P^{-1})\det(A - \lambda I_n)\det(P) = \det(A - \lambda I_n).$$