Série Vrai-Faux et QCM

Soit p un nombre premier. On note \mathbb{F}_p le corps fini à p éléments et écrira parfois a pour \bar{a} , pour un élément \bar{a} de \mathbb{F}_p . On fixe un corps K.

On écrira $M_n(K)$ pour $M_{n\times n}(K)$.

On utilisera les deux notations $A \subset B$ et $A \subseteq B$ pour indiquer qu'une partie A est un sous-ensemble d'une partie B, c'est-à-dire que tout élément de la partie A appartient à la partie B.

Exercice 1. Soit K un corps et soit V un K-espace vectoriel de dimension finie. Soient X et Y deux sous-espaces vectoriels de V, avec bases $B_X = \{x_1, \ldots, x_t\}$ et $B_Y = \{y_1, \ldots, y_s\}$, respectivement.

Indiquer si chacune des affirmations suivantes est vraie ou fausse.

- 1. $Si \dim X + \dim Y = \dim V$, alors, $V = X \oplus Y$.
- 2. X + Y est une somme directe et $V = X \oplus Y$ si et seulement si $(x_1, \ldots, x_t, y_1, \ldots, y_s)$ est une base de V.
- 3. Il existe une base C de V avec $B_X \cup B_Y \subset C$.

Exercice 2. Soit K un corps. Soient $A \in M_{p \times n}(K)$ et $B \in M_{p \times 1}(K)$. Soit AX = B un système d'équations linéaires avec inconnues $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$.

Indiquer si chacune des affirmations suivantes est vraie ou fausse.

- 1. Si p = n et A est inversible, alors, le système possède au moins une solution.
- 2. Si p = n et A est non inversible, alors, le système possède une infinité de solutions.
- 3. $Si \operatorname{rang}(A) < n$, le système possède plus qu'une solution.
- 4. Si B = 0, le système possède une solution unique si et seulement si rang(A) = n.

Exercice 3. Questions à choix multiples. Il n'y a qu'une seule réponse correcte par question.

(1) Soit la matrice $A \in M_3(\mathbb{R})$, avec $A = (a_{ij})_{1 \leq i,j \leq 3}$. On suppose que det(A) = d. Soit

$$B = \begin{pmatrix} 2(a_{11} + a_{12}) + a_{21} + a_{22} & 2a_{12} + a_{22} & 2(a_{13} - a_{12}) + a_{23} - a_{22} \\ a_{21} + a_{22} & a_{22} & a_{23} - a_{22} \\ a_{31} + a_{32} & a_{32} & a_{33} - a_{32} \end{pmatrix} \in M_3(\mathbb{R}).$$

Alors

$$det(B) = d.$$

$$det(B) = -\frac{1}{2}d.$$

$\dim \operatorname{Vect}(S) = 1.$
S est une partie libre et on peut le compléter avec le vecteur $(1,0,0,1)$ pour former une base de $(\mathbb{F}_7)^4$.
$\dim \text{Vect}(S) = 2$, et $\{(6, 3, 5, 4), (4, 2, 1, 5)\}$ est une base de $\text{Vect}(S)$.
$\dim \text{Vect}(S) = 2$, et $\{(6, 3, 5, 4), (3, 5, -1, -5)\}$ est une base de $\text{Vect}(S)$.

Exercice 4.

Soit $b \in \mathbb{R}$ un paramètre. On considère le système suivant d'équations linéaires à coefficients réels.

Soit $W \subset \mathbb{R}^5$ l'ensemble des solutions du système. Indiquer si chacune des affirmations suivantes est vraie ou fausse.

- 1. W est un sous-espace vectoriel de \mathbb{R}^5 pour tout $b \in \mathbb{R}$.
- 2. W possède un seul vecteur si $b \neq 0$.
- 3. Si b = 0 alors W est un sous-espace vectoriel de \mathbb{R}^5 de dimension 2.
- 4. Si b = 0 alors W est un sous-espace vectoriel de \mathbb{R}^5 de dimension 3.

Exercice 5. Soit K un corps. Soit V un K-espace vectoriel et soient W_1, W_2 deux sous-espaces vectoriels de V tels que $V = W_1 \oplus W_2$.

Indiquer si chacune des affirmations suivantes est vraie ou fausse.

- 1. Pour tout sous-espace vectoriel U de V, $U = (U \cap W_1) \oplus (U \cap W_2)$.
- 2. Si B_i est une base de W_i pour i = 1, 2, alors $B_1 \cup B_2$ est une base de V.
- 3. Si V est de dimension finie alors W_1 et W_2 sont de dimension finie et

$$\dim V = \dim W_1 + \dim W_2 - 2\dim(W_1 \cap W_2).$$

4. Pour tout sous-espace vectoriel U de V, si $U \cap W_1 = \{0\}$, alors $U \subset W_2$.

Exercice 6. Soit $A = \begin{pmatrix} a & b & c \\ x & y & z \\ r & s & t \end{pmatrix} \in M_{3\times 3}(\mathbb{R})$. On suppose que $\det(A) = \alpha$.

Indiquer si chacune des affirmations suivantes est vraie ou fausse.

1.
$$\det \begin{pmatrix} 2c & b & a \\ 2z & y & x \\ 2t & s & r \end{pmatrix} = -2\alpha.$$

2.
$$\det \begin{pmatrix} a & x & r \\ b & y & s \\ c & z & t \end{pmatrix} = \alpha.$$

3.
$$\det \begin{pmatrix} 2a - x & 2b - y & 2c - z \\ x & y & z \\ r & s & t \end{pmatrix} = -\alpha.$$

4.
$$\det \begin{pmatrix} a & -b & -c \\ -x & y & z \\ -r & s & t \end{pmatrix} = \alpha.$$

5. Si b = c et y = z alors $\alpha = 0$ si et seulement si s = t.

Exercice 7. Questions à choix multiples. Il n'y a qu'une seule réponse correcte par question.

(1) $Dans (\mathbb{F}_5)^4$, on considère les 4 vecteurs							
$f_1 = (1, a, 1, a), f_2 = (1, 1, a, a), f_3 = (0, 3 + 2a, 2 + 3a, 0), f_4 = (1, a, -a, a),$							
$o\grave{u}\;a\in\mathbb{F}_{5}.$							
Pour tout $a \in \mathbb{F}_5$, $\{f_1, f_2, f_3\}$ est une partie libre. Il existe $a \in \mathbb{F}_5$ telle que $\{f_1, f_2, f_3\}$ est une partie libre. Si $a \neq 1$, alors $\{f_1, f_2, f_3, f_4\}$ est une base de $(\mathbb{F}_5)^4$. Si $a = 0$ alors $\{f_1, f_2, f_4\}$ est une partie libre.							
(2) Soit $\alpha: M_{2\times 2}(\mathbb{R}) \to \mathbb{R}^4$ l'application \mathbb{R} -linéaire définie par							
$\alpha(\begin{pmatrix} a & b \\ c & d \end{pmatrix}) = (a+b+d, b+c, a-c+d, d).$							
$(3) \ \ Soit\ X = \{(a,b,c,d) \in \mathbb{R}^4 \mid a+b=c+2\},\ Y = \{(a,b,c,d) \in \mathbb{R}^4 \mid a+b=2c\},\ et\ Z = \{(0,b,c,d) \in \mathbb{R}^4 \mid b+c+d=0\}.$							
 X est un sous-espace vectoriel de R⁴ de dimension 3. Y est un sous-espace vectoriel de R⁴ de dimension 2. Z est un sous-espace vectoriel de R⁴ avec base {(1,0,0,0), (0,1,0,-1), (0,0,1,-1)} Y ∩ Z est un sous-espace vectoriel de R⁴ avec base {(0,2,1,-3)}. 							
(4) Soit K un corps, et soient E une base ordonnée de K^2 et F une base ordonnée de K^3 . Soient $A \in M_{2\times 3}(K)$ de rang 2 , $B \in M_{3\times 3}(K)$ de déterminant nul et $C \in M_{3\times 2}(K)$ de rang 2 .							
Exercice 8. Soient V un \mathbb{F}_5 -espace vectoriel. Soit v_1, v_2, \ldots, v_m des vecteurs distincts de V , avec $m \geq 3$, et posons							
$S = \{v_1, v_2, \dots, v_m\} \subset V.$							
Indiquer si chacune des affirmations suivantes est vraie ou fausse.							
1. Si v_1, v_2, v_3 sont libres alors $v_1 + v_2, v_1 + v_3, 2v_1 - 3v_2$ sont libres.							
2. $Si \{v_1, v_2, \dots, v_{m-1}\}$ est libre et $V = Vect(S)$ alors S est une base de V .							
3. Si S est une base de V alors V possède un nombre fini de vecteurs.							
Exercice 9. Soit $A \in M_{4\times 5}(\mathbb{R})$. Laquelle des affirmations suivantes équivant à dire que rang $(A) = 3$?							
A a une ligne nulle. A a deux colonnes nulles. Il existe au moins une colonne de A qui est une combinaison linéaire des autres colonnes. Il existe au moins une ligne de A qui est une combinaison linéaire des autres lignes. Aucune des autres assertions n'est correcte.							

Exercice 10. On considère le système linéaire

$$2x_1 + 3x_2 + 2x_3 + 2x_4 = 0$$
$$2x_2 + 3x_3 + 2x_4 = 0$$
$$3x_1 + 2x_2 + 3x_3 + 3x_4 = 0.$$

Soit W l'ensemble de toutes les solutions de ce système dans \mathbb{F}_5^4 . Laquelle des assertions suivantes est correcte?

W contient 1 élément.
W contient 16 éléments.
W contient 25 éléments.
W contient un nombre infini d'éléments.

Exercice 11. Soit V un K-espace vectoriel de dimension m et soient U et W des sous-espaces vectoriels de V tels qu'aucun des deux n'est inclus dans l'autre. Lesquelles des affirmations suivantes sont correctes?

- 1. Si m = 6 et dim $U = 4 = \dim W$, alors on a toujours que U + W = V.
- 2. Si m = 5 et dim U = 3 et dim W = 4, alors on a toujours que U + W = V.

Exercice 12. Parmi les assertions suivantes, lesquelles sont correctes?

- (a) Soit V un K-espace vectoriel et soit $W \subseteq V$ tel que (W, +) est un sous-groupe du groupe abélien (V, +). Alors W est un sous-espace vectoriel de V.
- (b) Soit V un K-espace vectoriel et soit $\emptyset \neq X \subseteq V$ et $X \neq \{0_V\}$. Alors Vect(X) est un sous-espace différent de $\{0_V\}$.
- (c) Soit (G, +) un groupe abélien. On définit une application

$$\cdot: K \times G \to G$$

par

$$(\lambda, q) \mapsto \lambda \cdot q := q$$

pour tout $\lambda \in K$ et pour tout $g \in G$. Avec la loi interne + sur G et la loi externe définie ci-dessus, G est un K-espace vectoriel.

- (d) Soit V un K-espace vectoriel et $W \subseteq V$ tel que pour tout $\lambda, \mu \in K$ et pour tout $u, v \in W$, on a $\lambda u + \mu v \in W$. Alors W est un sous-espace vectoriel de V.
- (e) Soient V un K-espace vectoriel avec sous-espaces U_1, U_2, U_3 . Si $U_1 + U_2 + U_3 = U_1 + U_2$ alors $U_3 \subseteq U_1 + U_2$.

Exercice 13. Parmi les affirmations suivantes, lesquelles sont correctes?

- a) L'application $\phi: \mathbb{C}^2 \longrightarrow \mathbb{C}$ définie par $\phi(z_1, z_2) = z_1 \overline{z_2}$ est \mathbb{C} -linéaire.
- b) L'application ϕ du point a) est \mathbb{R} -linéaire.
- c) L'ensemble $\phi^{-1}(0)$ est un \mathbb{C} -espace vectoriel.
- d) L'ensemble $\phi^{-1}(0)$ est un \mathbb{R} -espace vectoriel.

Exercice 14. Parmi les assertions suivantes, lesquelles sont correctes?

- a) L'espace vectoriel $M_{2\times 3}(K)$ est un anneau muni de l'addition et de la multiplication des matrices.
- b) Les matrices scalaires sont toujours inversibles.
- c) Soit A la matrice d'une application injective $\alpha: V \to W$ par rapport à des bases choisies de V et de W. Alors pour $v \in M_{n \times 1}(K)$ avec $n = \dim(V)$, Av = 0 si et seulement si v = 0.

Exercice 15. Parmi les assertions suivantes, lesquelles sont correctes?

a) Pour une matrice $A \in M_{p \times n}(K)$, le rang de A est au plus min(p, n).

b)	Pour deux	: matrices	A et B	de $m\hat{e}me$	taille, s	i chaque	ligne	de A	$est\ une$	combinais on	$lin\'eaire$	de	lignes	de .	В,
	alors A et	B sont lie	ane-éaui	ivalentes.											

c) Soit V un K-espace vectoriel et soient $L_1 = \{v_1, v_2\}$ et $L_2 = \{w_1, w_2\}$ deux parties libres dans V telles que $L_1 \cap L_2 = \emptyset$. Alors $\text{Vect}(L_1) + \text{Vect}(L_2)$ est la somme directe des deux sous-espaces $\text{Vect}(L_1)$ et $\text{Vect}(L_2)$.

Exercice 16. Parmi les assertions suivantes, lesquelles sont correctes?

- a) Si deux matrices carrées $A, B \in M_n(K)$ sont semblables, alors le rang-colonne de A est égal au rang-colonne de B.
- b) Si $A \in M_{p \times n}(K)$, le rang-ligne de A est égal au nombre de lignes non nulles de A.

Exercice 17. Répondre à chacune des questions suivantes en cochant la case correcte.

- a) On considère le système AX = B, où $A \in M_n(\mathbb{R})$ est une matrice carrée et $B \in M_{n \times 1}(\mathbb{R})$. On suppose que la matrice échelonnée réduite obtenue à partir de A possède au moins une ligne nulle. Est-ce que le système possède une solution unique ?
 - Oui, toujours.
 - O Cela dépend de B.
 - O Non, jamais.
- $b) \ \ On \ considère \ la \ matrice \ A = \left(\begin{array}{cccc} 2 & 1 & 1 & a \\ 0 & 1 & -1 & 1 \\ 1 & 0 & 1 & 0 \end{array} \right).$

Est-ce que le rang de A est égal à la dimension de l'espace des solutions du système linéaire AX = 0?

- Oui toujours, car le rang-ligne est égal à la dimension de l'espace des solutions du système.
- \bigcirc Oui si a = 0 et non si $a \neq 0$.
- \bigcirc Oui si a = 1 et non si $a \neq 1$.
- c) Soit $A, B \in M_n(K)$ avec $n \ge 2$. Est-ce que $\det(A + B) = \det(A) + \det(B)$?
 - Oui, toujours.
 - \bigcirc Oui si A et B sont diagonales.
 - Oui si A et B sont triangulaires supérieures et si $B_{ii} = 0$ pour tout i.

Exercice 18. Parmi les assertions suivantes, lesquelles sont correctes?

- a) Le déterminant est une application K-linéaire de $M_n(K)$ dans K.
- b) Une matrice triangulaire supérieure est inversible si et seulement si tous les coefficients sur la diagonale sont non nuls.
- c) Deux matrices $A, B \in M_n(K)$ sont semblables si et seulement si elles ont le même déterminant.
- d) Deux matrices carrées ligne-équivalentes ont le même déterminant.

Exercice 19. Parmi les assertions suivantes, lesquelles sont correctes?

- a) Un multiple scalaire d'un vecteur propre d'une transformation K-linéaire est encore un vecteur propre.
- b) Si une matrice A est diagonalisable, alors toute matrice semblable à A est diagonalisable.
- c) Soient α, β deux transformations K-linéaires de V. Si $v \in V$ est un vecteur propre commun de α et β , alors v est aussi un vecteur propre de $\alpha \circ \beta$.
- d) Si λ est une valeur propre d'une transformation K-linéaire α , alors, pour tout entier $k \geq 1$, λ^k est une valeur propre de α^k .

Exercice 20. Répondre à chacune des questions suivantes en cochant la case correcte.

- a) Soit $\pi: \mathbb{R}^2 \to \mathbb{R}^2$ la projection sur l'axe des x, donnée par $\pi(x,y)=(x,0)$. Combien π possède de valeurs propres ?
 - \bigcirc Aucune.
 - \bigcirc Une.
 - O Deux.

<i>b</i>)	Soit	$\alpha: \mathbb{R}^2 \to \mathbb{R}^2$ défini par $\alpha(x,y) = (x-2y,x-y)$. Quelles sont les valeurs propres de α ?
	\bigcirc	Tous les nombres réels.
	\bigcirc	Aucun nombre réel.
	\bigcirc	Le nombre 1 car pour $y = 0$ on trouve que $(x,0)$ est fixe par α .
c)		$\alpha: V \to V$ une transformation \mathbb{C} -linéaire d'un \mathbb{C} -espace vectoriel V et soit $\lambda \in \mathbb{C}$. Est-ce que $\alpha - \lambda \cdot \mathrm{id}$ est tive ?
		Non, jamais.
	\bigcirc	Oui si λ est nombre réel et non sinon.
	\bigcirc	Oui si λ n'est pas une valeur propre de α et non sinon.

Exercice 21. Parmi les assertions suivantes, lesquelles sont correctes?

- $a) \ \ Si \ une \ transformation \ K-lin\'eaire \ est \ triangularisable, \ alors \ elle \ poss\`ede \ un \ vecteur \ propre.$
- b) Si une matrice $A \in M_n(K)$ est diagonalisable, alors elle possède n valeurs propres distinctes.
- c) Si une matrice $A \in M_n(K)$ est triangularisable, alors $7A^2 2A + 5I_n$ est aussi triangularisable.
- d) Si une matrice $A \in M_n(K)$ est triangularisable, alors la somme des carrés de ses valeurs propres (répétitions comprises) est égale à $\operatorname{Tr}(A^2)$.