Série 14

17 décembre

Notation: Soit p un nombre premier. On note \mathbb{F}_p le corps fini à p éléments et écrira simplement a pour \bar{a} , pour un élément \bar{a} de \mathbb{F}_p .

On fixe un corps K.

On écrira $M_n(K)$ pour $M_{n\times n}(K)$.

Dans cette série et toutes les suivantes, on utilisera les deux notations $A \subset B$ et $A \subseteq B$ pour indiquer qu'une partie A est un sous-ensemble d'une partie B, c'est-à-dire que tout élément de la partie A appartient à la partie B.

Les exercices notés (\star) sont "en plus" car ils ressemblent à d'autres exercices. Vous pouvez éventuellement les garder pour la période des révisions

Exercice 1. On considère l'application de transposition $\alpha: M_2(\mathbb{R}) \longrightarrow M_2(\mathbb{R})$ définie par $\alpha(A) = A^t \quad \forall A \in M_2(\mathbb{R})$. Voir l'exercice 2 de la série 13.

Montrer que α est diagonalisable.

Exercice 2. Soit $b \in \mathbb{R}$ fixé et $\alpha : M_2(\mathbb{R}) \longrightarrow M_2(\mathbb{R})$ l'application suivante:

$$\alpha(\left(\begin{array}{cc} x & y \\ z & t \end{array}\right)) = \left(\begin{array}{cc} y & x \\ (b+1)z - bt & z \end{array}\right).$$

On admettra que α est une application \mathbb{R} -linéaire.

- a) Calculer le polynôme caractéristique de α et trouver ses valeurs propres.
- b) Trouver les espaces propres correspondants.
- c) Déterminer si α est diagonalisable. Le cas échéant, trouver une base formée de vecteurs propres et expliciter la formule de changement de base.

Exercice 3. Pour quelles valeurs de a et b la matrice $M=\left(\begin{array}{cc} a+b & b \\ -b & a-b \end{array}\right)$ est-elle diagonalisable ?

Exercice 4. (a) Soit $\alpha: V \to V$ une transformation linéaire d'un K-espace vectoriel V. On suppose que V est de dimension 5, que α possède exactement 4 valeurs propres distinctes, et que $\operatorname{Im}(\alpha)$ est de dimension 3. Montrer que α est diagonalisable.

(b) Soit
$$A = \begin{pmatrix} 2 & 0 & C \\ 0 & 2 & \\ 0 & 0 & \\ 0 & 0 & D \\ 0 & 0 & \end{pmatrix} \in M_5(\mathbb{C}), \text{ où } C \in M_{2\times 3}(\mathbb{C}) \text{ et } D \in M_3(\mathbb{C}). \text{ Supposons que } c_A(t) = (t-2)^2 t^2 (t+1) \text{ et } dt$$

que rang(D) = 2. Montrer que A n'est pas diagonalisable.

Exercice 5. On considère la matrice
$$A = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & -1 & 2 \\ 0 & 0 & -4 & 5 \end{pmatrix} \in M_4(\mathbb{Q}).$$

- a) Montrer que A est trigonalisable.
- b) Trigonaliser A en explicitant la formule de changement de base.

Exercise 6. Soit $A \in M_3(\mathbb{C})$ une matrice non inversible vérifiant $\operatorname{Tr}(A) = -2i$ et $\operatorname{Tr}(A^2) = 0$.

- a) La matrice A est-elle trigonalisable?
- b) Soient a_1, a_2, a_3 les valeurs propres de A. Exprimer les valeurs propres de A^2 en termes de a_1, a_2, a_3 .
- c) Déterminer les valeurs propres de A.

d) La matrice A est-elle diagonalisable?

Exercice 7. Trouver la matrice des cofacteurs de A et de B (des matrices dans $M_3(K)$) et vérifier dans chaque cas que $A((\operatorname{cof}(A))^t = \det(A)I_3$ et $(\operatorname{cof}(B))^t B = \det(B)I_3$. Soit $a \in K$.

$$A = \begin{pmatrix} a & 1 & 1 \\ 0 & 2 & -1 \\ a & -1 & 2 \end{pmatrix} \ et \ B = \begin{pmatrix} 1 & 3 & 5 \\ 0 & 1 & 2 \\ 1 & 0 & 1 \end{pmatrix}.$$

Exercice 8 (Faites référence à l'exercice 13 de la série 13.). Soit $a \in \mathbb{R}$ fixé. On considère la transformation linéaire α de $M_2(\mathbb{R})$ définie par

$$\alpha \left(\begin{array}{cc} x & y \\ z & t \end{array} \right) = \left(\begin{array}{cc} (1-a)x + ay & x \\ 2z + t & t \end{array} \right).$$

Déterminer si α est diagonalisable. Le cas échéant, trouver une base formée de vecteurs propres et expliciter la formule de changement de base.

Exercice 9 (Facultatif). Soient K et F des corps avec $K \subset F$. On considère les espaces vectoriels K^n et F^n . On rappelle que F^n possède une structure de F-espace vectoriel ainsi qu'une structure de K-espace vectoriel. Soit (v_1, \ldots, v_n) une base du K-espace vectoriel K^n . Alors $v_i \in F^n$ pour tout i. Montrer que (v_1, \ldots, v_n) est une base du F-espace vectoriel F^n .

Exercice 10 (Facultatif). Soient K un corps, $A \in M_n(K)$ et $B, X \in M_{n \times 1}(K)$. On considère le système linéaire AX = B.

On suppose que $det(A) \neq 0$, auquel cas le système linéaire possède une solution unique. On donne ici une formule pour l'unique solution en termes des déterminants de certaines matrices.

Soit $S \in M_{n \times 1}(K)$ l'unique solution du système et écrivons $S^t = (s_1 \ s_2 \ \dots \ s_n)$.

- a) A l'aide de S, exprimer B comme combinaison linéaire des colonnes de A.
- b) Pour $1 \le k \le n$, désignons par C_k la matrice obtenue à partir de A en remplaçant la k-ème colonne de A par la colonne B. Montrer la formule de Cramer

$$s_k = \frac{\det(C_k)}{\det(A)}$$
 $(k = 1, \dots, n).$

Notons que cette formule est intéressante du point de vue théorique, mais est très peu utilisable pour les calculs.

Exercice 11 (*). Soient $a, b \in \mathbb{R}$ fixés et $n \geq 2$.

On considère la matrice $A = (A_{ij})_{1 \le i,j \le n} \in M_n(\mathbb{R})$ avec

$$A_{ij} = \left\{ \begin{array}{ll} a & \text{si } i = j, \\ b & \text{si } i \neq j. \end{array} \right.$$

- a) Montrer que a b est une valeur propre de A et trouver l'espace propre correspondant.
- b) Montrer que le vecteur $(1,1,\cdots,1)$ est un vecteur propre. Pour quelle valeur propre?
- c) Montrer que A est diagonalisable.
- d) Trouver une base formée de vecteurs propres, et quand n=3, expliciter la formule de changement de base.

Exercice 12. (\star)

Soit $V = \mathbb{C}[t]_{\leq 3}$ et $\alpha: V \longrightarrow V$ définie par

$$\alpha(P(t)) = P(t) - (t+1)P'(t).$$

Déterminer les valeurs propres de α et les espaces propres correspondants en indiquant une base pour chacun. L'application α est-elle diagonalisable?

Exercice 13 (Cet exercice complète une preuve du cours). Soient W_1, \ldots, W_r des sous-espaces vectoriels d'un Kespace vectoriel V tels que $W_1 + \cdots + W_r = W_1 \oplus \cdots \oplus W_r$. Soit B_i une base de W_i , pour $1 \le i \le r$. Montrer que la réunion $B = B_1 \cup \cdots \cup B_r$ est une base de $W_1 + \cdots + W_r$.