Série 12

3 décembre

Notation: Soit p un nombre premier. On note \mathbb{F}_p le corps fini à p éléments et écrira simplement a pour \bar{a} , pour un élément \bar{a} de \mathbb{F}_p .

On fixe un corps K.

On écrira $M_n(K)$ pour $M_{n\times n}(K)$.

Dans cette série et toutes les suivantes, on utilisera les deux notations $A \subset B$ et $A \subseteq B$ pour indiquer qu'une partie A est un sous-ensemble d'une partie B, c'est-à-dire que tout élément de la partie A appartient à la partie B.

L'exercice noté avec (†) est un peu plus difficile.

Exercice 1. Soit a un nombre complexe fixé. On considère les matrices complexes suivantes:

$$A = \begin{pmatrix} 0 & 5+2i & -3i & 2+7i & a \\ 0 & 1 & -i & 1 & 0 \\ i & 7+i & 6i & 3i & -4+i \\ 0 & i & 0 & a & 0 \\ 0 & 0 & a & 2 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 & 0 & 5 & 0 & 0 \\ 2 & 1 & -11 & 13 & 0 & -3 \\ 0 & 7 & 0 & 3 & 0 & 0 \\ 3 & 0 & 8 & 5 & 0 & 4 \\ 2 & 7 & 4 & 77 & 0 & 2 \\ 5 & 1 & 6 & 12 & 3 & 1 \end{pmatrix}.$$

- a) Calculer le déterminant de A en développant par rapport à une lique ou à une colonne.
- b) Refaire a) en utilisant des opérations élémentaires.
- c) La matrice A est-elle inversible?
- d) Calculer le déterminant de B et celui de B^2 .
- e) Soit p un nombre premier. Si on considère B comme une matrice à coefficients dans le corps fini \mathbb{F}_p à p éléments, pour quels nombres premiers p la matrice B est-elle de rang 6?

Exercice 2 (Résultat a retenir car très utile dans les calculs de déterminants, en particulier pour calculer un polynôme caractéristique). Soient $A \in M_n(K)$, $B \in M_{n \times m}(K)$, $C \in M_{m \times n}(K)$ et $D \in M_m(K)$. Montrer que

$$\det \left(\begin{array}{cc} A & B \\ 0 & D \end{array} \right) = \det(A) \cdot \det(D) = \det \left(\begin{array}{cc} A & 0 \\ C & D \end{array} \right).$$

Exercice 3. Sachant que $\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 10$, calculer $\begin{vmatrix} 4a & 4b & 4c \\ g & h & i \\ 3d + g & 3e + h & 3f + i \end{vmatrix}$.

Exercice 4. Montrer qu'il n'existe pas de matrice $A \in M_3(\mathbb{R})$ telle que $A^{2012} + I_3 = 0$.

Exercice 5. Dans chacun des cas suivants, trouver toutes les valeurs propres de la transformations linéaire $\alpha: V \to V$, et tous les vecteurs propres associés.

- a) $V = \mathbb{R}^2$, $\alpha(x, y) = (2x + y, -y)$.
- b) $V = \mathbb{R}^2$, $\alpha(x, y) = (x + y, -x + y)$.
- c) $V = \mathbb{C}^2$, $\alpha(x, y) = (x + y, -x + y)$.
- d) $V = M_2(\mathbb{R}), \quad \alpha \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} c & -2d \\ -a & -b \end{pmatrix}.$
- e) $V = \mathcal{F}(\mathbb{C}, \mathbb{C}), \quad \alpha(f)(x) = -xf(x) \text{ pour tout } x \in \mathbb{C}.$
- f) $V = \mathcal{C}([a, b], \mathbb{R})$ l'espace des fonctions continues à valeurs réelles définies sur l'intervalle fermé $[a, b], \alpha : V \to V, \alpha(f)(x) = -xf(x)$ pour tout $x \in [a, b].$

Exercice 6. Soit $\alpha: V \to V$ une transformation linéaire d'un K-espace vectoriel V. Soit λ une valeur propre de α . L'espace propre associé à λ est par définition $E_{\lambda} = \{v \in V \mid \alpha(v) = \lambda v\}$.

- a) Montrer que E_{λ} est un sous-espace vectoriel de V.
- b) Montrer que $E_{\lambda} = \{\text{vecteurs propres correspondant } \dot{a} \ \lambda\} \cup \{0\}.$
- c) Montrer que E_{λ} est invariant par α , c'est-à-dire que pour tout $w \in E_{\lambda}$ on a que $\alpha(w) \in E_{\lambda}$.
- d) Soit μ une valeur propre de α , différente de λ . Montrer que $E_{\lambda} \cap E_{\mu} = \{0\}$.

Exercice 7. Soit V un \mathbb{R} -espace vectoriel avec base ordonnée $B = (f_1, f_2, f_3, f_4)$ et soit $\alpha \in \mathcal{L}(V, V)$ telle que

$$(\alpha)_B^B = \begin{pmatrix} 1 & 2 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & -2 & 1 & -5 \end{pmatrix}.$$

- (a) Montrer que $2f_1 f_2$ est un vecteur propre de α et en déduire une valeur propre de α .
- (b) Montrer que -5 est une valeur propre de α .
- (c) Trouver E_0 et E_{-5} .

Exercice 8. On considère les permutations suivantes:

$$\sigma_{1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 5 & 7 & 1 & 8 & 2 & 6 & 4 & 9 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 4 & 6 & 5 & 2 & 9 & 3 & 8 & 7 \end{pmatrix},$$

$$\sigma_{2} = (1 & 3 & 5 & 6 & 8 & 9)(4 & 5 & 6 & 7 & 8)(3 & 2),$$

$$\sigma_{3} = (1 & 3)(2 & 4)(3 & 1)(5 & 6)(8 & 7)(2 & 8)(1 & 3)$$

$$\sigma_{4} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 3 & 1 & 4 & 2 & 6 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 6 & 5 & 4 & 2 \end{pmatrix}$$

$$\sigma_{5} = (1 & 3 & 5 & 6)(3 & 7 & 2)(1 & 2)$$

$$\sigma_{6} = (1 & 3)(2 & 4)(3 & 1)(4 & 5)(5 & 6)(4 & 8)$$

$$\sigma_{7} \in S_{9} \quad \text{définie par} \quad \sigma_{7}(i) = 10 - i$$

$$\sigma_{8} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 6 & 7 & 8 & 1 & 2 & 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 7 & 6 & 5 & 2 & 8 & 4 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 3 & 2 & 6 & 1 & 5 & 8 & 7 \end{pmatrix},$$

$$\sigma_8 = \begin{pmatrix} 5 & 6 & 7 & 8 & 1 & 2 & 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 7 & 6 & 5 & 2 & 8 & 4 & 3 \end{pmatrix} \begin{pmatrix} 4 & 3 & 2 & 6 & 1 & 5 & 8 & 7 \end{pmatrix}
\sigma_9 = (1 2)(2 3)(3 4)(4 5)(5 6),
\sigma_{10} = (2 3 5 6)(7 2 4 3)(1 2)(2 3)$$

Déterminer la signature de chacune des permutations.

Exercice 9 (Cet exercice complète une preuve du cours.). Soient $A \in M_{p \times n}(K)$ et $B \in M_{p \times 1}(K)$ et soit encore $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ où x_1, \ldots, x_n sont des inconnues. On suppose que AX = B possède une solution $y = (y_1, \ldots, y_n) \in K^n$.

Montrer que l'ensemble des solutions du système est $\{y+x\mid x\in K^n \text{ est une solution du système } AX=0\}.$

Exercice 10 (Cet exercice complète une preuve du cours.). Soient V et W des K-espaces vectoriels et soit $\varphi: V \times \cdots \times V \to W$ une application m-multilinéaire. Montrer que pour tout $1 \le i \le m$ et pour tout $v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_m \in V$ on a $\varphi(v_1, \ldots, v_{i-1}, 0_V, v_{i+1}, \ldots, v_m) = 0_W$.

Exercice 11 (Facultatif). Montrer que $A_n = \{ \sigma \in S_n \mid \sigma \text{ est paire} \}$ est un sous-groupe de S_n . (Ce groupe s'appelle le groupe alterné de degré n.)

Exercice 12. (†) Soit $V = \mathcal{C}^{\infty}(]0, \ 1[,\mathbb{R})$ l'espace des fonctions réelles définies sur]0,1[qui sont infiniment dérivables. Considérons la transformation linéaire $\alpha: V \to V$ envoyant $f \in V$ sur $\alpha(f)(x) = xf'(x)$ pour tout $x \in]0,1[$.

- a) Montrer que tout nombre réel λ est valeur propre de α en trouvant un vecteur propre f_{λ} correspondant.
- b) Trouver ensuite tous les vecteurs propres de α . Indication: Soit g_{λ} un autre vecteur propre de α associé à la valeur propre λ . Considérer $(g_{\lambda}/f_{\lambda})'$.