Corrigé 11

26 novembre

Notation: Soit p un nombre premier. On note \mathbb{F}_p le corps fini à p éléments et écrira simplement a pour \bar{a} , pour un élément \bar{a} de \mathbb{F}_p .

On fixe un corps K.

On écrira $M_n(K)$ pour $M_{n\times n}(K)$.

Dans cette série et toutes les suivantes, on utilisera les deux notations $A \subset B$ et $A \subseteq B$ pour indiquer qu'une partie A est un sous-ensemble d'une partie B, c'est-à-dire que tout élément de la partie A appartient à la partie B.

L'exercice noté avec (†) est un peu plus difficile.

Exercice 1. a) Résoudre dans \mathbb{R} le système suivant. Déterminer les inconnues libres et les inconnues principales. Trouver une base échelonnée réduite de l'espace des solutions.

$$\begin{cases}
-x - 2y + 4z + 5t = 0 \\
3x + 2y + 5z - t = 0 \\
8y - 24z - 18t = 0 \\
2x + 9z + 4t = 0.
\end{cases}$$

b) Même question qu'au point a), mais en travaillant sur \mathbb{F}_5 .

Exercice 2. Soit $a \in \mathbb{R}$ un nombre réel fixé. Résoudre le système linéaire suivant. Déterminer les inconnues libres et les inconnues principales.

$$\begin{cases} 3x - y + 4z + t = 1 \\ 6x + y - z + 2t = 5 \\ y + az + 3t = 2. \end{cases}$$

Exercice 3. Soit la matrice inversible

$$A = \begin{pmatrix} 1 & -1 & 1 & 1 \\ 2 & 2 & 0 & 0 \\ 0 & 3 & 1 & 3 \\ \frac{1}{2} & -\frac{1}{2} & -\frac{3}{2} & -3 \end{pmatrix} \in M_{4 \times 4}(\mathbb{R}).$$

Trouver A^{-1} .

Exercice 4. Calculer l'inverse des matrices A et B, où $a, b, c, d \in \mathbb{R}$.

$$A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & a & b \\ 0 & 1 & c & d. \end{pmatrix}$$

Exercice 5. Soit V et W des K-espaces vectoriels et soit $T \in \mathcal{L}(V, W)$.

- 1. Pour un sous-ensemble $Y \subset W$, posons $T^{-1}(Y) = \{v \in V \mid T(v) \in Y\}$, c'est l'ensemble des antécédants de Y par l'application T. Montrer que si Y est un sous-espace vectoriel de W, alors $T^{-1}(Y)$ est un sous-espace vectoriel de V.
- 2. Soient U un K-espace vectoriel et $\alpha \in \mathcal{L}(V,W)$, $\beta \in \mathcal{L}(W,U)$. Montrer que $\operatorname{Ker}(\beta \circ \alpha) = \alpha^{-1}(\operatorname{Ker}\beta)$.
- 3. Pour α, β comme dans la partie précédente, montrer que si $\beta \circ \alpha$ est bijective, alors α est injective et β est surjective.
- 4. Montrer que si $\{v_1, \ldots, v_t\}$ est une famille de vecteurs linéairement indépendants et T est injective, alors $\{T(v_1), \ldots, T(v_t)\}$ est aussi une famille de vecteurs linéairement indépendants.

Exercice 6. On considère les permutations suivantes:

$$\sigma_{1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 5 & 7 & 1 & 8 & 2 & 6 & 4 & 9 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 4 & 6 & 5 & 2 & 9 & 3 & 8 & 7 \end{pmatrix},$$

$$\sigma_{2} = (1 & 3 & 5 & 6 & 8 & 9)(4 & 5 & 6 & 7 & 8)(3 & 2),$$

$$\sigma_{3} = (1 & 3)(2 & 4)(3 & 1)(5 & 6)(8 & 7)(2 & 8)(1 & 3)$$

$$\sigma_{4} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 3 & 1 & 4 & 2 & 6 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 6 & 5 & 4 & 2 \end{pmatrix}$$

$$\sigma_{5} = (1 & 3 & 5 & 6)(3 & 7 & 2)(1 & 2)$$

$$\sigma_{6} = (1 & 3)(2 & 4)(3 & 1)(4 & 5)(5 & 6)(4 & 8)$$

$$\sigma_{7} \in S_{9} \quad \text{définie par} \quad \sigma_{7}(i) = 10 - i$$

$$\sigma_8 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 6 & 7 & 8 & 1 & 2 & 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 7 & 6 & 5 & 2 & 8 & 4 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 3 & 2 & 6 & 1 & 5 & 8 & 7 \end{pmatrix},$$

$$\sigma_9 = (1\ 2)(2\ 3)(3\ 4)(4\ 5)(5\ 6),$$

$$\sigma_{10} = (2\ 3\ 5\ 6)(7\ 2\ 4\ 3)(1\ 2)(2\ 3)$$

Ecrire chacune des permutations σ_i sous forme d'un produit de cycles disjoints.

Exercice 7. (a) Soit $H = \{ \sigma \in S_n \mid \sigma(n) = n \}$. Montrer que H est un sous-groupe de S_n .

(b) Trouver la signature des permutations suivantes :

$$(1\ 2\ 4\ 5), \quad (1\ 2)(3\ 4)(1\ 2\ 6), \quad (1\ 2\ 3\ \cdots\ r),$$

 $où r \geq 2$.

Exercice 8. Soit V, W et U des K-espaces vectoriels de dimension finie non nuls. Soit $\alpha: V \to W$ et $\beta: W \to U$ des applications K-linéaires. On fixe des bases B_V , B_W et B_U de V, W et U respectivement et on pose $A = (\alpha)_{B_V}^{B_W}$ et $B = (\beta)_{B_W}^{B_U}$.

- a) Démontrer que $\operatorname{Im}(\beta \circ \alpha) \subset \operatorname{Im} \beta$.
- b) Démontrer que $rg(BA) \leq rgB$.
- c) Démontrer que $\operatorname{Ker} \alpha \subseteq \operatorname{Ker} (\beta \circ \alpha)$.
- d) Démontrer que $rg(BA) \leq rgA$.
- e) Trouver dans chaque cas un exemple où l'inclusion/l'inégalité est stricte.
- f) Trouver dans chaque cas un exemple où l'inclusion/l'inégalité est une égalité.

Exercice 9. Soit $\alpha: \mathbb{C}^4 \to \mathbb{C}^3$ l'application \mathbb{C} -linéaire définie par

$$\alpha(x, y, z, t) = (x - iy + (1 + i)t, 2x - y + iz, y + z + 2it).$$

- a) Trouver une base échelonnée réduite de $\operatorname{Im}(\alpha)$ et déterminer sa dimension.
- b) Trouver une base de $Ker(\alpha)$ et déterminer sa dimension.
- c) Trouver les solutions de $\alpha(x, y, z, t) = (-i, -2 + 3i, 3)$.

Exercice 10. (†) Soient $A, B \in M_n(K)$ des matrices triangulaires inférieures. Montrer que AB est triangulaire inférieure. Montrer aussi que si A est inversible alors A^{-1} est aussi triangulaire inférieure.