

F449

Ens: Prof. Donna Testerman

Algèbre linéaire avancée 1 [MATH-110(b)] - XXX

Date: 18.01.2024 - Durée: 210 minutes

XXX-449

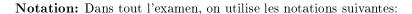
SCIPER: FAK449

Signature:

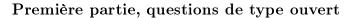
Attendez le début de l'épreuve avant de tourner la page. Ce document est imprimé recto-verso, il contient 17 questions sur 20 pages, les dernières pouvant être vides. Ne pas dégrafer.

- Posez votre carte d'étudiant sur la table.
- L'utilisation d'une calculatrice et de tout outil électronique est interdite pendant l'épreuve.
- Aucun document n'est autorisé.
- Pour les questions à choix multiple, on comptera:
 - +3 points si la réponse est correcte, et
 - 0 point si il n'y a aucune ou plus d'une réponse inscrite, ou si la réponse est incorrecte.
- Pour les questions de type Vrai-faux, on comptera:
 - +1 points si la réponse est correcte,
 - 0 point si il n'y a aucune ou plus d'une réponse inscrite, et
 - -1 point si la réponse est incorrecte.
- Pour les questions à choix multiple et les questions vrai-faux utilisez un **stylo** à encre **noire ou bleue foncée** et effacez proprement avec du **correcteur blanc** si nécessaire.
- Pour les questions ouvertes:
 - vous pouvez utiliser un crayon à papier à condition d'écrire lisiblement;
 - répondre dans l'espace dédié;
 - votre réponse doit être soigneusement justifiée, toutes les étapes de votre raisonnement et des calculs doivent figurer dans le dossier rendu;
 - si vous utilisez des résultats du cours, citez-les explictement;
 - laisser libre les cases à cocher, elles sont réservées au correcteur.
- Les éventuels points négatifs aux questions de type vrai-faux sont comptabilisés dans le total des points.
- Si une question est erronée, l'enseignant se réserve le droit de l'annuler.

Respectez les consignes suivantes Read these guidelines Beachten Sie bitte die unten stehenden Richtlinien		
choisir une réponse select an answer Antwort auswählen	ne PAS choisir une réponse NOT select an answer NICHT Antwort auswählen	Corriger une réponse Correct an answer Antwort korrigieren
ce qu'il ne faut <u>PAS</u> faire what should <u>NOT</u> be done was man <u>NICHT</u> tun sollte		



- K est un corps quelconque; on écrira 0 pour l'élément neutre pour l'addition et 1 pour l'élément neutre pour la multiplication.
- \bullet $\mathbb R$ est le corps des nombres réels.
- Q est le corps des nombres rationnels.
- \mathbb{C} est le corps des nombres complexes, $\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}.$
- Pour un nombre premier p, \mathbb{F}_p est le corps fini à p éléments des entiers modulo p, et pour $a \in \mathbb{Z}$, on écrit encore $a \in \mathbb{F}_p$, pour la classe de a modulo p.
- K[t] désigne l'anneau des polynômes à coefficients dans K.
- $K[t]_{\leq m}$ désigne le K-espace vectoriel des polynômes à coefficients dans K de degré au plus m.
- I_m désigne la matrice identité de taille $m \times m$.
- $M_{n \times m}(K)$ désigne le K-espace vectoriel des matrices de taille $n \times m$ et à coefficients dans K.
- $GL_n(K)$ désigne le groupe des matrices inversibles de taille $n \times n$ à coefficients dans K, avec loi de composition la multiplication de matrices.
- X est le vecteur colonne $X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$ formé des inconnues x_1, \dots, x_n .
- Pour un K-espace vectoriel V de dimension finie avec base ordonnée B, et pour $v \in V$, on écrit $(v)_B$ pour le vecteur colonne formé des coordonnées de v par rapport à la base B.



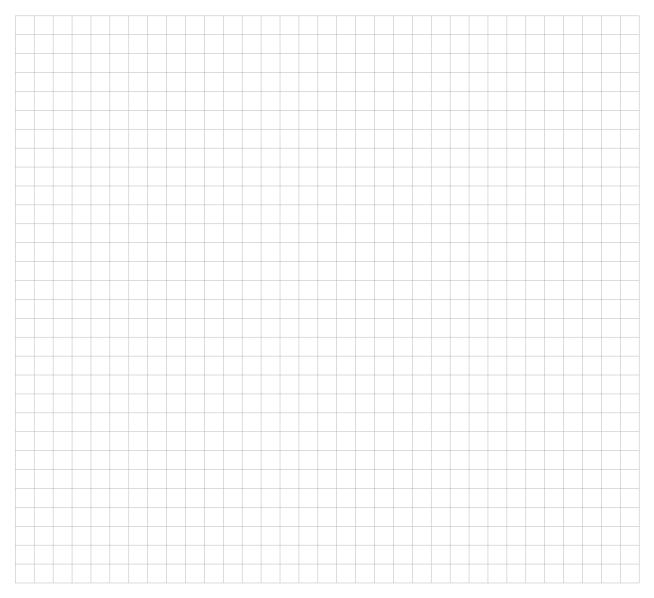
Rappel des consignes:

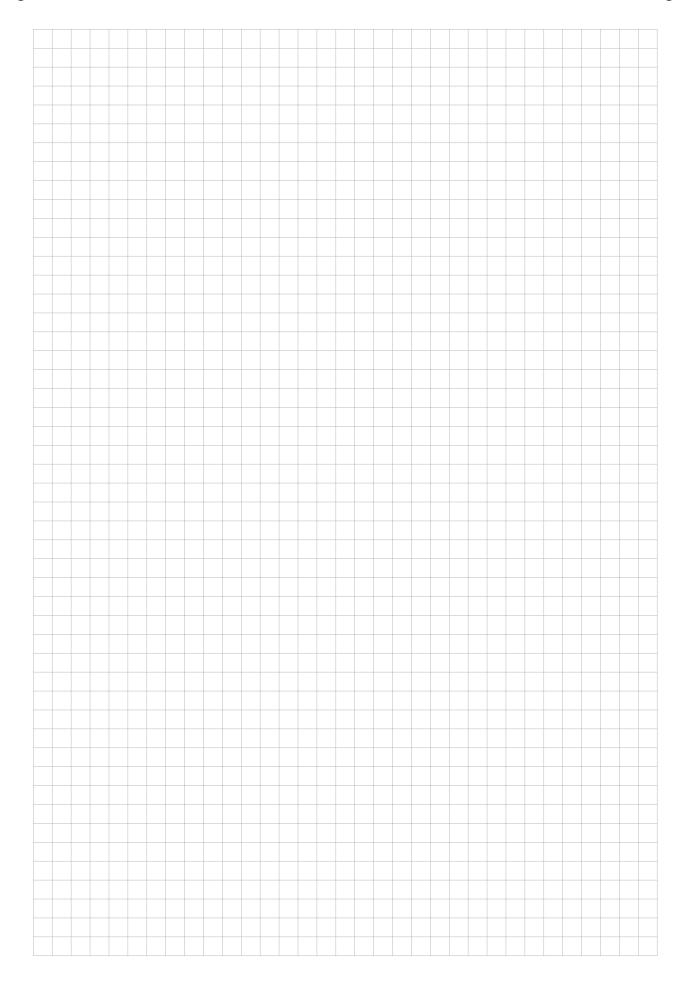
Répondre dans l'espace dédié. Votre réponse doit être soigneusement justifiée, toutes les étapes de votre raisonnement doivent figurer dans votre réponse. Laisser libres les cases à cocher: elles sont réservées aux correcteurs.

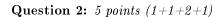
Question 1: 7 points

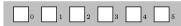
Utiliser la méthode d'élimination de Gauss pour trouver l'ensemble des solutions du système suivant d'équations linéaires à coefficients dans \mathbb{R} , pour tout choix du paramètre $a \in \mathbb{R}$.

$$\begin{cases} x_1 + 2x_2 + x_3 + x_5 & = -a \\ -x_2 + x_5 & = a + 1 \\ 2x_1 + 5x_2 + 5x_3 + 4x_4 + 3x_5 & = -1 \\ 2x_1 + 4x_2 + 5x_3 + 4x_4 + 4x_5 & = 2a \end{cases}$$





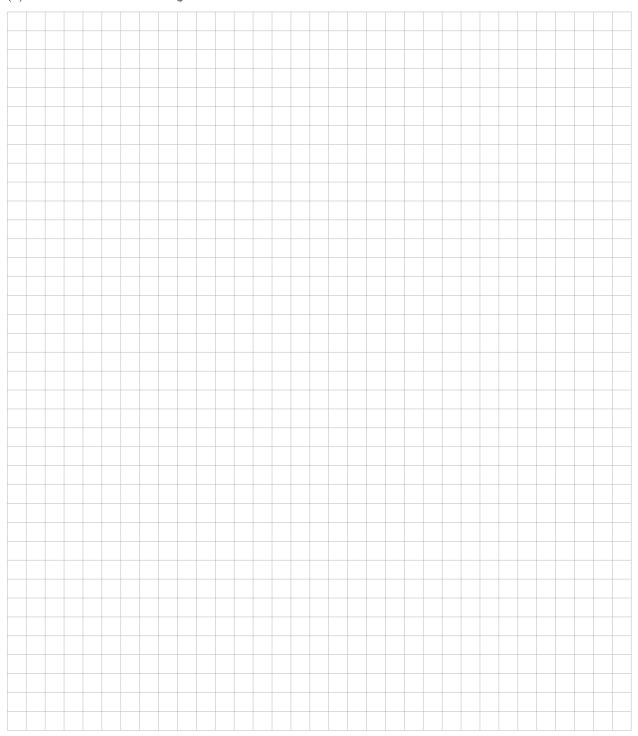




Réservé au correcteur

Soient $W = \{(a,b,c,d,e) \mid a+b+c+d+e=0\}$ et $U = \{(a,b,c,d,e) \mid a-b+c-d+e=0\}$ des sous-espaces vectoriels de \mathbb{Q}^5 .

- (a) Déterminer $\dim W$.
- (b) Déterminer $\dim U$.
- (c) Déterminer $\dim(W \cap U)$.
- (d) Déterminer si $W + U = \mathbb{Q}^5$.



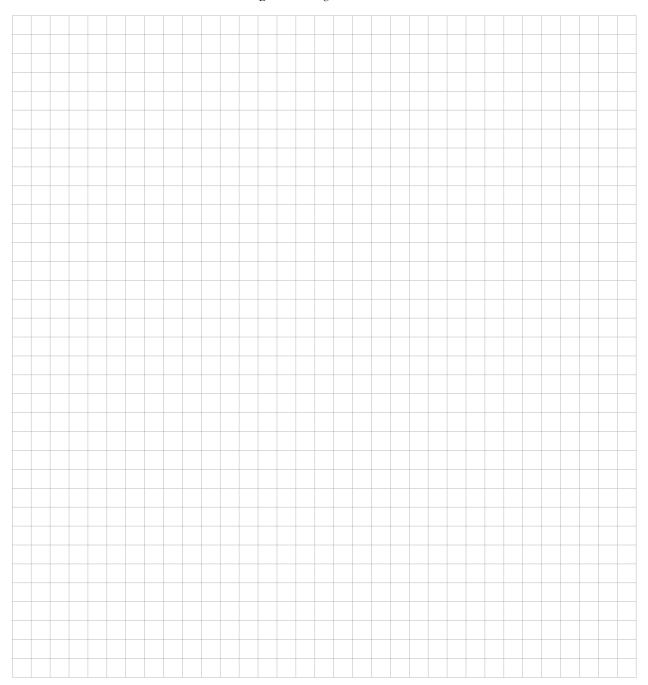
Question 3: 5 points

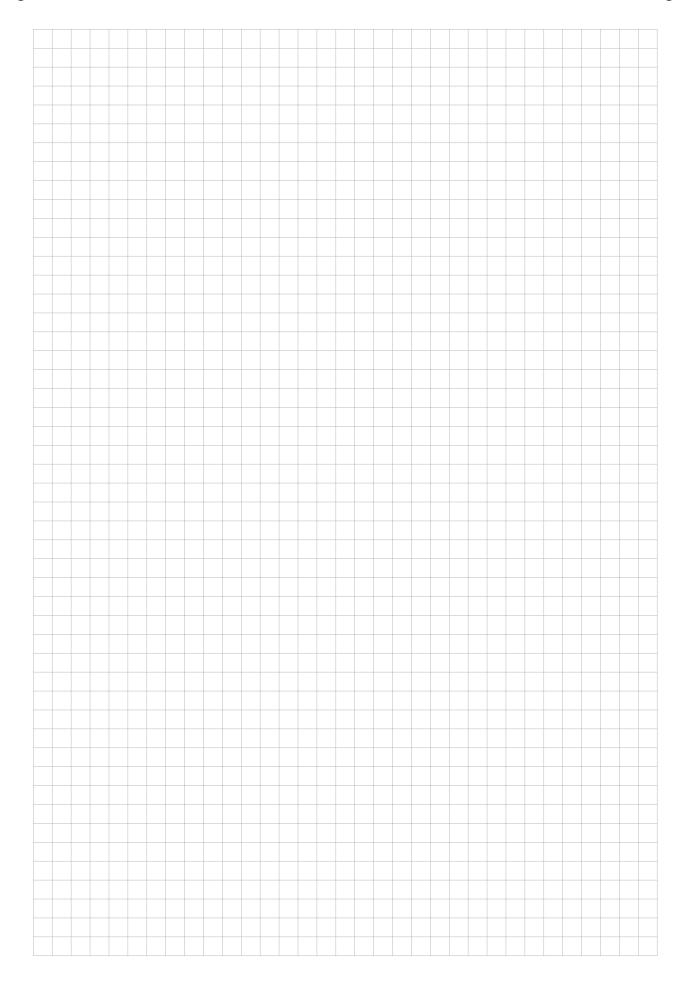
Soient V et W des \mathbb{R} -espaces vectoriels et soient $B=(v_1,v_2,v_3,v_4)$ une base ordonnée de V et $C=(w_1,w_2,w_3,w_4,w_5)$ une base ordonnée de W. Soit $T:V\to W$ l'application \mathbb{R} -linéaire telle que la matrice de T par rapport aux deux bases données est la matrice A. Soient encore \hat{B} et \hat{C} les bases ordonnées suivantes de V et W:

$$\hat{B} = (2v_1 - v_2, v_2 + v_3 - v_4, v_3 + v_4, v_4)$$
 et $\hat{C} = (w_2, w_3, w_5, -w_1, -w_4)$.

Donner les matrices inversibles P et Q telles que

$$QAP(v)_{\hat{B}} = (T(v))_{\hat{C}} \text{ pour tout } v \in V.$$





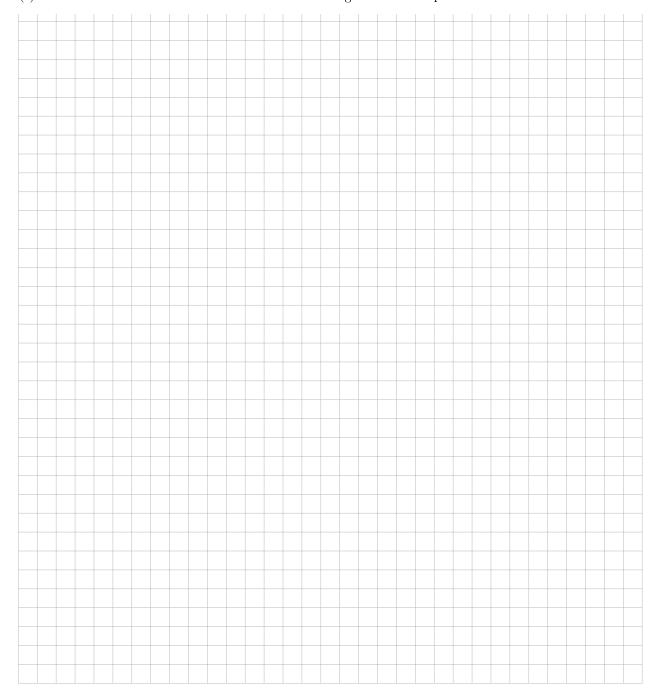
Question 4: 7 points (3+3+1)

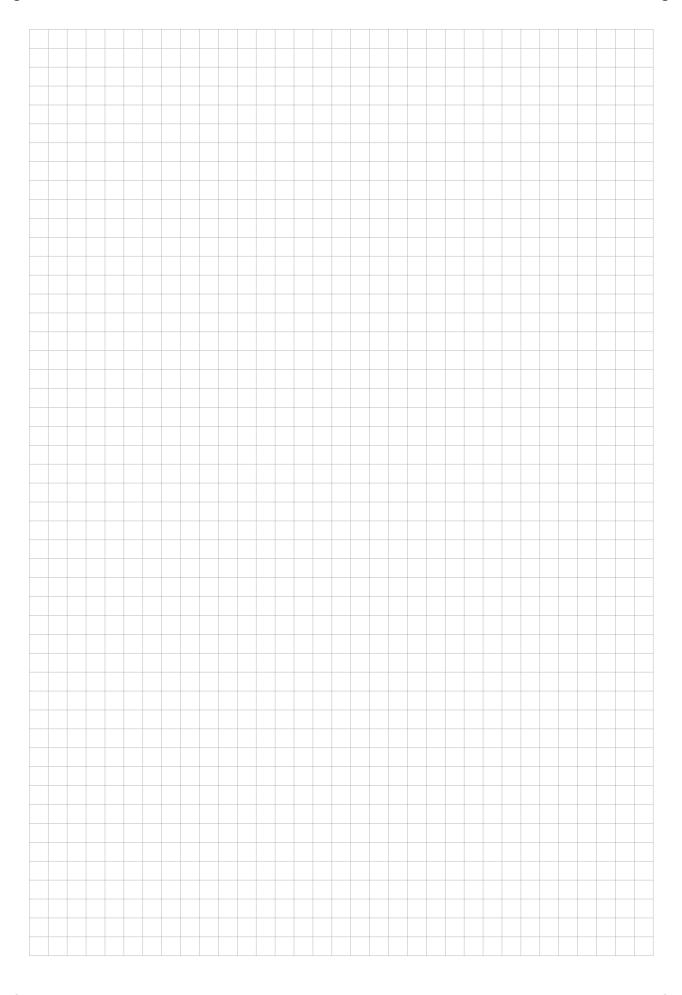


Soit $\varphi: \mathbb{R}^4 \to \mathbb{R}^4$ la transformation \mathbb{R} -linéaire dont la matrice par rapport à la base canonique de \mathbb{R}^4 est

$$A = \begin{pmatrix} \sqrt{2} & 0 & 0 & 0 \\ -\sqrt{2} & 0 & \pi & 0 \\ \pi & \pi & 0 & 0 \\ 0 & 0 & 0 & \sqrt{2} \end{pmatrix}.$$

- (a) Trouver toutes les valeurs propres de φ .
- (b) Trouver une base de chaque espace propre de φ .
- (c) Trouver une matrice inversible P et une matrice diagonale D telle que $P^{-1}AP = D$.





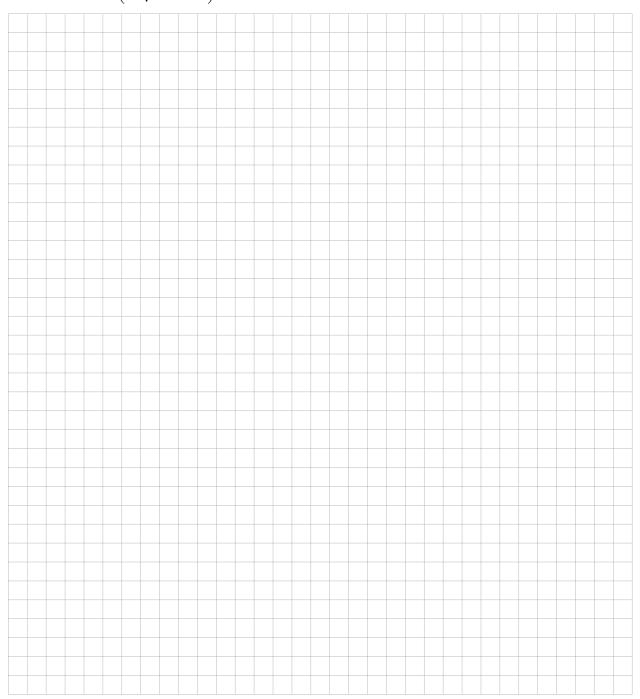
Question 5: 9 points

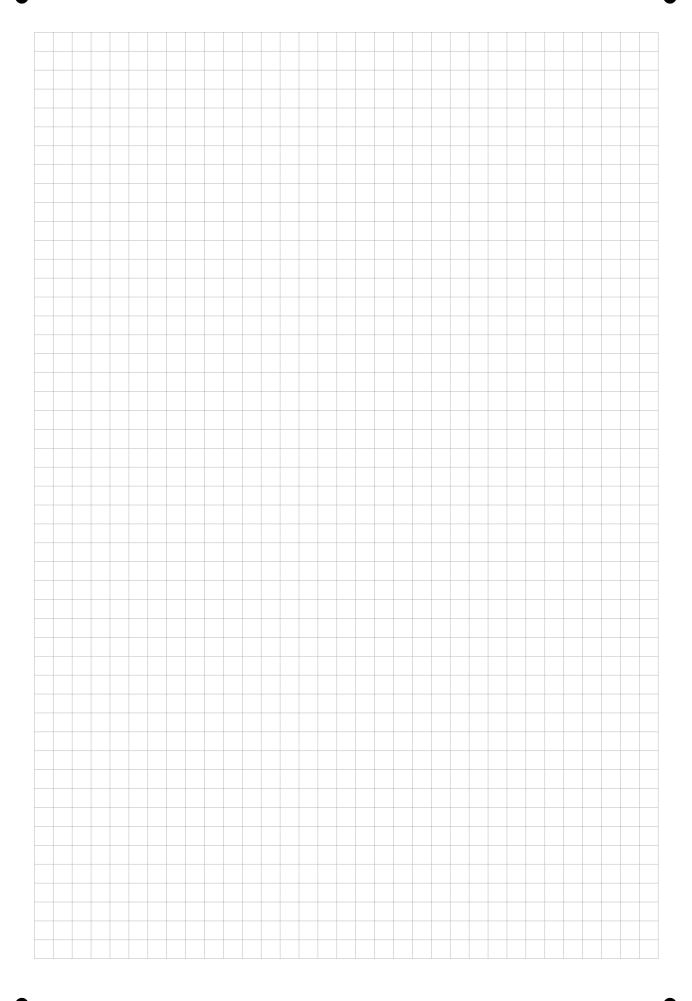
Réservé au correcteur

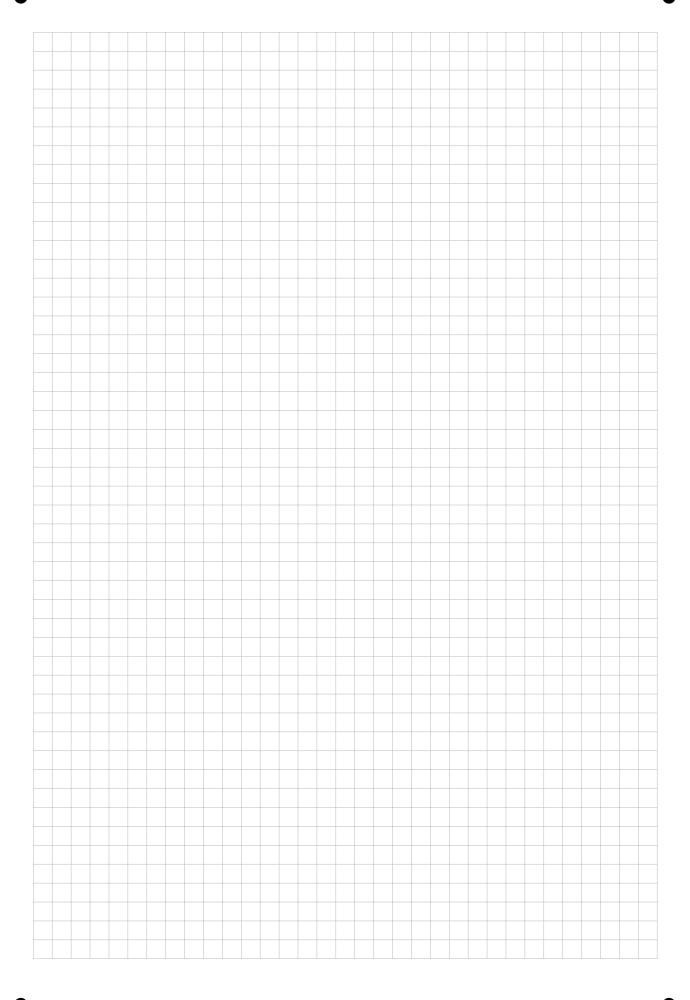
Soit $W=\{p\in\mathbb{R}[t]_{\leq 4}\mid p(1)=0\}$ et $V=M_{2\times 2}(\mathbb{R})$. Soit $S:W\to V$ l'application \mathbb{R} -linéaire qui satisfait à

$$S(1-t) = \begin{pmatrix} 1 & \sqrt{2} \\ 0 & 0 \end{pmatrix}; \quad S(1-t^2) = \begin{pmatrix} 0 & 0 \\ \sqrt{2} & 1 \end{pmatrix}; \quad S(1-t^3) = \begin{pmatrix} \sqrt{2} & 2 \\ 2 & \sqrt{2} \end{pmatrix}; \quad S(1-t^4) = \begin{pmatrix} \sqrt{3} & \sqrt{6} \\ \sqrt{6} & \sqrt{3} \end{pmatrix}.$$

- (a) Trouver une base de Ker(S).
- (b) Trouver une base de im(S).
- (c) Déterminer si p appartient à Ker (S) pour $p=3\sqrt{2}-2\sqrt{3}-3\sqrt{2}t^3+2\sqrt{3}t^4$.
- (d) Déterminer si $\begin{pmatrix} 2 & -2\sqrt{2} \\ -2\sqrt{2} & 2 \end{pmatrix}$ appartient à im (S).







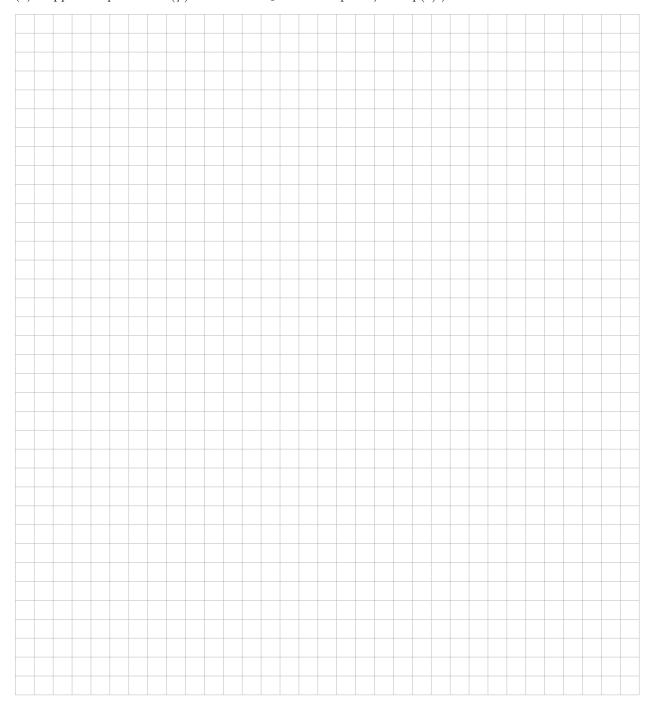
Question 6: 6 points (3+3)

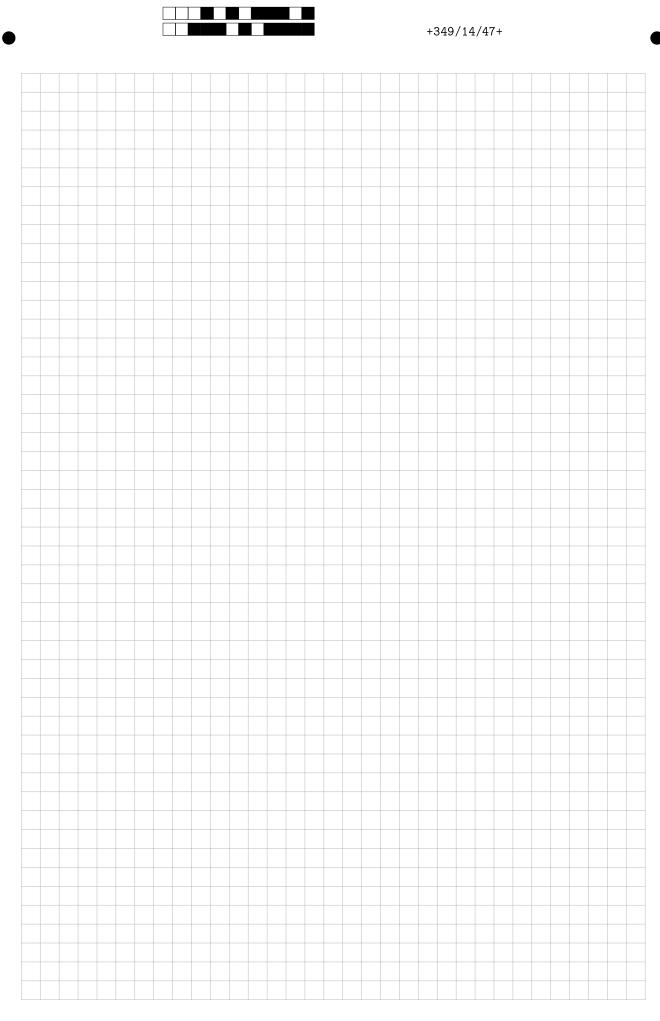
Soit V un K-espace vectoriel de dimension finie et soit φ une transformation K-linéaire de V. On suppose que φ est diagonalisable et que son polynôme caractéristique $\chi_{\varphi}(t)$ est

$$\chi_{\varphi}(t) = t^{m_1}(t-a)^{m_2}p(t)$$
, pour $m_i \ge 1, i = 1, 2$, et $p(t) \in K[t]$.

Pour une valeur propre λ de φ , on note par E_{λ} l'espace propre associé à la valeur propre λ .

- (a) Supposons que a=0 et p(t)=1. Montrer que $\varphi=0$.
- (b) Supposons que dim im $(\varphi) = \dim V m_1$. Montrer que $a \neq 0$ et $p(0) \neq 0$.

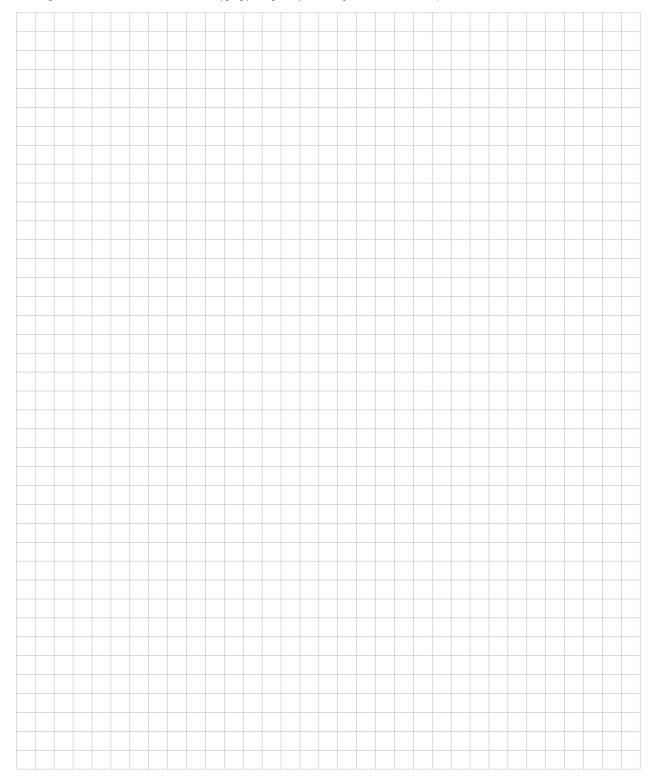


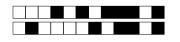


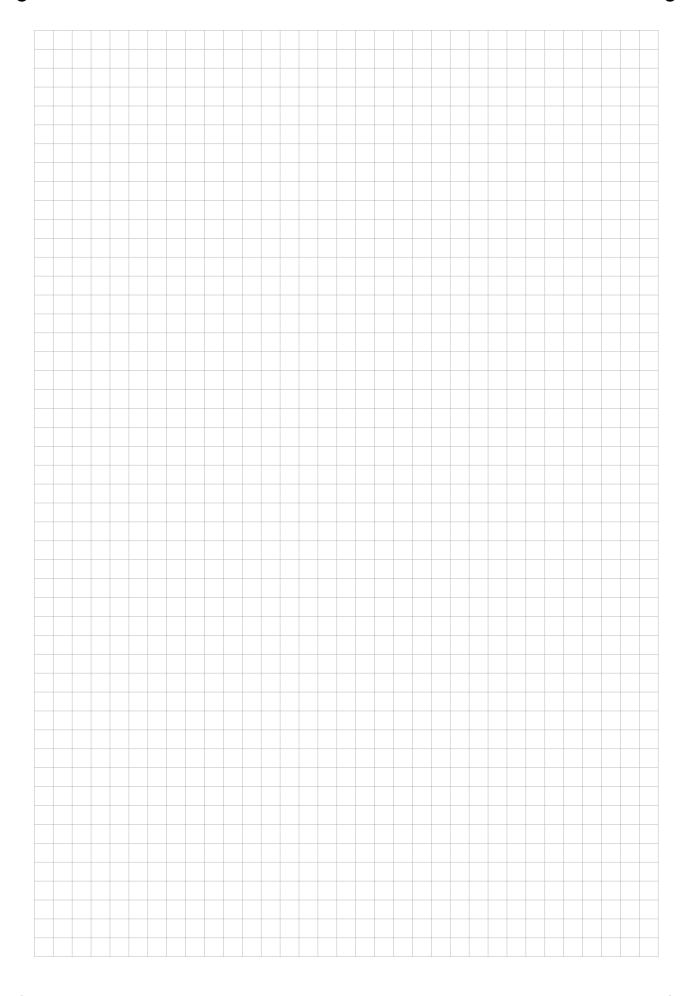
Question 7: 5 points

Soit $\varphi: M_{n\times m}(K) \to K[t]_{\leq m-2}$ une application K-linéaire.

- (a) Montrer qu'il existe $A \in \text{Ker}(\varphi)$ avec $A_{1j} \neq 0$ pour au moins un $j, 1 \leq j \leq m$.
- (b) Soit $A \in \text{Ker}(\varphi)$ comme dans (a). On suppose maintenant que pour tout $B \in \text{Ker}(\varphi)$ avec première ligne non nulle, on a $B \in \text{Vect}(\{A\}) = \{\lambda A \mid \lambda \in K\}$. Montrer que φ est surjective.







Deuxième partie, questions à choix multiple

Pour chaque question marquer la case correspondante à la réponse correcte sans faire de ratures. Il n'y a qu'une seule réponse correcte par question.

Question 8: Soit $\lambda \in \mathbb{Q}$ et soit $A_{\lambda} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & \lambda & 0 \\ \lambda & 0 & 1 & 1 \\ 0 & -1 & -1 & \lambda \end{pmatrix} \in M_{4\times 4}(\mathbb{Q})$. Alors

- \square A_{λ} est inversible si et seulement si $\lambda \not\in \{1, -1\}$ et si B est l'inverse de $A_{\frac{1}{2}}$ alors $B_{41} = -\frac{1}{3}$.
- \square A_{λ} est inversible si et seulement si $\lambda \neq 1$ et si B est l'inverse de $A_{\frac{1}{2}}$ alors $B_{42} = \frac{1}{3}$.
- A_{λ} est inversible si et seulement si $\lambda \neq -1$ et si B est l'inverse de $A_{\frac{1}{2}}$ alors $B_{41} = -\frac{1}{3}$.
- \square A_{λ} est inversible si et seulement si $\lambda \not\in \{1, -1\}$ et si B est l'inverse de $A_{\frac{1}{2}}$ alors $B_{42} = -\frac{2}{3}$.

Question 9 : Soit $T: \mathbb{R}^2 \to \mathbb{R}^2$ une transformation linéaire et $\mathcal{B} = ((1, -1), (-1, 2))$ une base ordonnée de \mathbb{R}^2 , telle que la matrice de T par rapport à la base \mathcal{B} soit $M = \begin{pmatrix} 2 & 3 \\ 1 & 6 \end{pmatrix}$. Alors $T(x, y) = \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{$

- (x-3y,9y).

Question 10: Soit $W = \text{Vect}(A_1, A_2, A_3, A_4) \subseteq M_{2\times 2}(\mathbb{C})$, où

$$A_1 = \begin{pmatrix} i & 0 \\ 1 & 0 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 1 & -2 \\ i & 0 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 0 & -2 \\ 2i & 0 \end{pmatrix} \text{ et } \quad A_4 = \begin{pmatrix} i+1 & -4 \\ 1+3i & 0 \end{pmatrix}.$$

Alors

- \square dim W=3 et il existe une base B de W telle que $B\cup \left\{\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}\right\}$ est une base de $M_{2\times 2}(\mathbb{C})$.
- \square dim W=3 et il existe une base B de W telle que $B\cup \left\{\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\right\}$ est une base de $M_{2\times 2}(\mathbb{C})$.

Troisième partie, questions du type Vrai ou Faux

Pour chaque question, marquer (sans faire de ratures) la case VRAI si l'affirmation est **toujours vraie** ou la case FAUX si elle **n'est pas toujours vraie** (c'est-à-dire, si elle est parfois fausse).

Question 11: Soient U, W deux sous-espaces vectoriels d'un K-espace vectoriel V. On suppose que U et W sont de dimension finie et que $\dim U = \dim W$. Alors $U \cup W$ est un sous-espace vectoriel de V si et seulement si U = W.

VRAI FAUX

Question 12 : Soient $A, P \in M_{n \times n}(K)$ avec P inversible. Alors AP^{-1} et $P^{-1}A$ ont le même polynôme caractéristique.

VRAI FAUX

Question 13: Soit $A \in M_{n \times n}(K)$. Alors $\det(A^t A) = (\det A)^2$ si et seulement si A est symétrique.

☐ VRAI ☐ FAUX

Question 14: Soient $A \in M_{n \times n}(K)$ et $\alpha, \lambda \in K$. Si λ est une valeur propre de A, alors $\lambda + \alpha$ est une valeur propre de la matrice $A + \alpha \cdot I_n$.

☐ VRAI ☐ FAUX

Question 15: Pour tout $a_{ij} \in K$, $1 \le i, j \le 4$, on a

$$\det \begin{pmatrix} 2a_{11} - a_{21} & 2 - a_{22} & 4 - a_{23} & 2a_{14} - 1 \\ a_{11} & 1 & 2 & a_{14} \\ a_{31} & 0 & a_{33} & a_{34} \\ a_{41} & 1 & a_{43} & a_{44} \end{pmatrix} = \det \begin{pmatrix} a_{11} & 1 & 2 & a_{14} \\ a_{21} & a_{22} & a_{23} & 1 \\ a_{31} & 0 & a_{33} & a_{34} \\ a_{41} & 1 & a_{43} & a_{44} \end{pmatrix}.$$

VRAI FAUX

Question 16: Soient U, W, S des sous-espaces vectoriels d'un K-espace vectoriel V tels que

$$U \cap S = \{0\} = W \cap S \text{ et } U \oplus S = W \oplus S.$$

Alors U = W.

VRAI FAUX

Question 17: Soient $X, Y \in GL_n(K)$, et posons $W = \{D \in M_{n \times n}(K) \mid DXD = DYD\}$. Alors W est un sous-espace vectoriel de $M_{n \times n}(K)$ de dimension au moins 1.

☐ VRAI ☐ FAUX

