Série 3

Vous etes fortement encourages a essayer de resoudre (eventuellement a plusieurs) l'exercice (\star) et a rendre votre solution (eventuellement a plusieurs) avant le vendredi de la semaine suivante celle ou la serie a ete postee. Il faudra transmettre votre solution sur moodle, sous forme de fichier pdf (eventuellement tape en LaTeX) en suivant le lien a cet effet dans la semaine de la serie.

Exercice 1. Soit G = [0, 1] et $\oplus : G \times G \mapsto \mathbb{R}$ la loi de composition definie par

$$x \oplus x' := \begin{cases} x + x' & \text{si } x + x' < 1 \\ x + x' - 1 & \text{si } x + x' \geqslant 1 \end{cases}.$$

1. Montrer que \oplus est a valeurs dans G et trouver un element neutre $0_G \in G$ et une application inversion $\ominus: G \mapsto G$ telles que

$$(G, \oplus, 0_G, \ominus)$$

forme un groupe commutatif.

Exercice 2 (*). Soit X un ensemble. Dans la premiere serie, on a defini sur l'ensemble de ses parties $\mathcal{P}(X)$ une loi de composition

$$\Delta: (A, B) \in \mathcal{P}(X) \times \mathcal{P}(X) \to A\Delta B \in \mathcal{P}(X),$$

ou $A\Delta B$ est la difference symetrique de A et B:

$$A\Delta B := A \cup B - A \cap B = \{x \in A \cup B, x \notin A \cap B\} \subset X$$

(les elements de X qui sont dans la reunion de A et B et qui ne sont pas dans leur intersection).

1. Definir un element neutre $e_{\mathcal{P}(X)} \in \mathcal{P}(X)$ et une inversion $\bullet^{-1} : \mathcal{P}(X) \to \mathcal{P}(X)$ de sorte que

$$(\mathcal{P}(X), \Delta, e_{\mathcal{P}(X)}, \bullet^{-1})$$

forme un groupe commutatif.

Exercice 3 (Groupes de fonctions). Soit X un ensemble et (G,\star) un groupe. Soit

$$\mathcal{F}(X,G) = \{ f : X \mapsto G \}$$

l'ensemble des fonctions de X a valeurs dans G (les applications de X vers G).

On muni $\mathcal{F}(X,G)$ de la loi de composition interne suivante : etant donne $f_1, f_2 \in \mathcal{F}(X,G)$ on defini la fonction $f_1 \star f_2$ par

$$\forall x \in X, \ f_1 \star f_2(x) := f_1(x) \star f_2(x).$$

(ici on abuse les notations en notant la loi de composition sur $\mathcal{F}(X,G)$ de la meme maniere que celle sur G).

- 1. Trouver un element neutre $e_{\mathcal{F}(X,G)}$ et une inversion \bullet^{-1} de sorte que $(\mathcal{F}(X,G),\star,e_{\mathcal{F}(X,G)},\bullet^{-1})$ forme un groupe.
- 2. Soit $U \subset G$ un sous-ensemble de G. Donner une condition necessaire et suffisante pour que le sous-ensemble des fonctions a valeurs dans U

$$\mathcal{F}(X,U) \subset \mathcal{F}(X,G)$$

forme un sous-groupe de $\mathcal{F}(X,G)$.

Exercice 4 (Groupes modulaires). Soit $q \ge 1$ un entier non nul; on definit sur \mathbb{Z} la relation suivante (de congruence modulo q)

$$m \equiv n \pmod{q} \iff m - n = qk, \ k \in \mathbb{Z}$$

et on dit que m et n sont congrus modulo q (ie. la difference m-n est divisible par q).

Pour $a \in \mathbb{Z}$ la classe de congruence $a \pmod{q}$ est l'ensemble des entiers m congrus a $a \pmod{q}$:

$$a \pmod{q} = \{m \in \mathbb{Z}, \ m \equiv a \pmod{q}\} \subset \mathbb{Z}.$$

L'ensemble de ces classes de congruences modulo q est note

$$\mathbb{Z}/q\mathbb{Z} := \{ a \pmod{q}, \ a \in \mathbb{Z} \}$$

(c'est donc un sous-ensemble de $\mathcal{P}(\mathbb{Z})$).

- 1. Montrer que la relation de congruence modulo q est une relation d'equivalence (reflexive, symetrique, transitive).
- 2. Montrer que

$$a \pmod{q} := a + q\mathbb{Z} = \{a + q.k, \ k \in \mathbb{Z}\} \subset \mathbb{Z}.$$

3. Montrer que pour toute classe $a \pmod{q} \in \mathbb{Z}/q\mathbb{Z}$ il existe $r \in \{0, \dots, q-1\}$ tel que

$$a \pmod{q} = r \pmod{q}$$
.

Quel est le cardinal de $\mathbb{Z}/q\mathbb{Z}$?

4. pour $A, B \in \mathcal{P}(\mathbb{Z})$ des sous-ensembles de \mathbb{Z} , on a pose

$$A \boxplus B := \{a + b, a \in A, b \in B\} \in \mathscr{P}(\mathbb{Z}).$$

On definit egalement

$$\Box A := \{-a, \ a \in A\} \in \mathscr{P}(\mathbb{Z}),$$

l'ensemble des opposes des elements de A. Soient $a \pmod{q}$, $b \pmod{q} \in \mathbb{Z}/q\mathbb{Z}$, montrer que

$$a \pmod{q} \boxplus b \pmod{q} = a + b \pmod{q} = a + b + q\mathbb{Z}.$$

et que

$$\Box a \pmod{q} = (-a) \pmod{q} = -a + q\mathbb{Z}.$$

- 5. Montrer que $(\mathbb{Z}/q\mathbb{Z}, \boxplus, 0 \pmod{q}, \boxminus)$ forme un groupe commutatif : le groupe des classes de congruence modulo q.
- 6. On rappelle la notation "multiple" (dans la notation additive) pour $n \ge 1$

$$n.a \pmod{q} := a \pmod{q} + \cdots + a \pmod{q} \pmod{q}$$
 (n fois)

(et on rappelle qu'on a une notation simulaire pour $n \leq 0$). Montrer que pour $n \in \mathbb{Z}$

$$n.a \pmod{q} = na \pmod{q}$$

(la classe de congruence de l'entier na).

7. Montrer que le sous-groupe $\mathbb{Z}.1 \pmod{q}$ verifie

$$\mathbb{Z}.1 \pmod{q} = \{n.1 \pmod{q}, \ n \in \mathbb{Z}\} = \mathbb{Z}/q\mathbb{Z}.$$

8. Montrer que si a est premier avec q (ie. pgcd(a, q) = 1) alors

$$\mathbb{Z}.a \pmod{q} = \{n.a \pmod{q}, n \in \mathbb{Z}\} = \mathbb{Z}/q\mathbb{Z}$$

(on utilisera Bezout pour montrer qu'il existe $n \in \mathbb{Z}$ tel que $n.a \pmod{q} = 1 \pmod{q}$.

Remarque. On a donc montre que pour tout entier $q \ge 1$ il existe un groupe commutatif fini d'ordre q.

Exercice 5. Soit $(G, \star, e, \bullet^{-1})$ un groupe fini de cardinal $n \ge 1$. On enumere ses elements de la maniere suivante

$$G = \{g_0 = e, g_1, \cdots, g_{n-1}\}.$$

On peut representer la loi de groupe sous forme d'un tableau

*	e	g_1	• • •	g_{n-1}
e	e	g_1	:	g_{n-1}
g_1	g_1	$g_1 \star g_1$	•	$g_1 \star g_{n-1}$
:	•	:	٠.	:
g_{n-1}	g_{n-1}	$g_{n-1} \star g_1$		$g_{n-1} \star g_{n-1}$

1. Donner ces tableaux pour n=1,2,3 (si on veut, on pourra utiliser un corollaire convenable du Thm de Lagrange).