Automne 2024

Série 13

Pour cette serie et la suivante il n'y aura pas d'exercice a rendre (fin du semestre).

Sauf mention explicite du contraire, on suppose que le corps de base K est de caracteristique $\neq 2$ de sorte que $1_K \neq -1_K$.

Exercice 1. On considere la matrice suivante

$$N = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 6 \\ 4 & 1 & 2 & 3 \end{pmatrix} \in M_4(\mathbb{Q})$$

que l'on voit comme matrice d'une application lineaire $\varphi: \mathbb{Q}^4 \to \mathbb{Q}^4$ dans les bases canoniques.

1. En reduisant un systeme lineaire convenable trouver des bases du noyau et de l'image de φ ainsi que des equations cartesiennes de ces sous-espaces (avec un nombre minimal d'equations).

Formes multilineaires/symetriques/alternees

On note $\operatorname{Mult}^{(n)}(V,K)$ l'espace des formes multilineaires en n variables sur V a valeurs dans K et on note $\operatorname{Sym}^{(n)}(V;K)$ et $\operatorname{Alt}^{(n)}(V;K)$ les sous-ensembles des formes symetriques et alternees.

Exercice 2. Les notations comme ci-dessus

- 1. Montrer que $\mathrm{Alt}^{(n)}(V;K)$ et $\mathrm{Sym}^{(n)}(V;K)$ sont des SEVs de $\mathrm{Mult}^{(n)}(V;K)$.
- 2. Montrer que sur $\operatorname{car} K \neq 2$,

$$\operatorname{Alt}^{(n)}(V;K) \cap \operatorname{Sym}^{(n)}(V;K) = \{\underline{\mathbf{0}}_K\}$$

(ie. ils sont en somme directe).

3. Montrer que si car K = 2,

$$Alt^{(n)}(V;K) = Sym^{(n)}(V;K).$$

4. Montrer que si n=2 on a

$$\operatorname{Mult}^{(2)}(V;K) = \operatorname{Alt}^{(2)}(V;K) \oplus \operatorname{Sym}^{(2)}(V;K)$$

(toute forme bilineaire peut se decomposer de maniere unique en la somme d'une forme bilineaire alternee et d'une forme bilineaire symetrique; ce n'est pas vrai pour $n \ge 3$). Pour cela s'inspirer du processus de symetrisation comme dans l'exemple des fonctions paires/impaires mais en utilisant une transformation d'ordre 2 convenable sur $Mult^{(2)}(V; K)$.

Exercice 3. Soit $\varphi: V \mapsto V$ une application lineaire. Pour toute forme multilineaire Λ en n variables, on definit

$$\varphi^*(\Lambda): (v_1, \cdots, v_n) \mapsto \Lambda(\varphi(v_1), \cdots, \varphi(v_n)).$$

1. Montrer que $\varphi^*(\Lambda)$ est multilineaire, alternee ou symetrique si Λ l'est.

Action par permutations

Exercice 4 (Rappels sur le groupe symetrique). Soit $n \ge 1$ et $\mathfrak{S}_n = \operatorname{Bij}(\{1, \dots, n\})$ le groupe des permutations de n elements. On rappelle qu'il existe un morphisme de groupes (la signature) non-trivial (qui n'est pas constant egal a 1)

$$sign: \mathfrak{S}_n \mapsto \{\pm 1\}.$$

On va montrer que c'est le seul.

1. Soit G un groupe et $\varphi: G \mapsto C$ un morphisme vers un groupe commutatif C. Montrer que pour tout $g,h\in G$ on a

$$\varphi(ghg^{-1}) = \varphi(h).$$

- 2. Soit K un corps de caracteristique $\neq 2$ (on ecrira 1 et -1 pour les image de 1 et -1 dans K par le morphisme canonique) et $s: \mathfrak{S}_n \mapsto K^{\times}$ un morphisme non-trivial (different du morphisme constant $\underline{1}$); montrer que pour toute transposition τ , $s(\tau) \in \{\pm 1\}$. Montrer qu'il existe une transposition τ telle que $s(\tau) = -1$.
- 3. Montrer que pour toute transposition τ' on a $s(\tau') = -1_K$ et que s = sign.

4. Montrer que

$$\sum_{\sigma \in \mathfrak{S}_{-}} \operatorname{sign}(\sigma) = 0.$$

Pour cela on pourra considerer une transposition τ et faire le changement de variable $\sigma \leftrightarrow \sigma \tau$ dans la somme ci-dessus pour montrer qu'elle s'annule.

Exercice 5. Soit $n \ge 1$ et $\sigma : \{1, \dots, n\} \mapsto \{1, \dots, n\}$ une permutation de $\{1, \dots, n\}$.

1. Montrer que

$$\sigma. \bullet. \Lambda \mapsto \sigma.\Lambda$$

definie par

$$\sigma.\Lambda:(v_1,\cdots,v_n)=\Lambda(v_{\sigma(1)},\cdots,v_{\sigma(n)})$$

est une application lineaire de $\operatorname{Mult}^{(n)}(V;K)$ sur $\operatorname{Mult}^{(n)}(V;K)$.

- 2. Montrer que $\sigma. \bullet$ envoie le sous-espace $\operatorname{Alt}^{(n)}(V;K)$ sur $\operatorname{Alt}^{(n)}(V;K)$ et $\operatorname{Sym}^{(n)}(V;K)$ sur $\operatorname{Sym}^{(n)}(V;K)$ (quelque soit la signature de σ).
- 3. Soient $l_1, \dots, l_n : V \mapsto K$ des forme lineaires (pas forcement distinctes) montrer que

$$\sigma.(l_1 \otimes \cdots \otimes l_n) = l_{\sigma^{-1}(1)} \otimes \cdots \otimes l_{\sigma^{-1}(n)}$$

ou σ^{-1} est la permutation reciproque.

Symetrisation

Dans le cours on a vu l' endomorphisme de symetrisation de l'espace $\operatorname{Mult}^{(n)}(V,K)$:

$$\bullet_{\text{sign}}: \Lambda \mapsto \sum_{\sigma \in \mathfrak{S}_{\mathcal{D}}} \operatorname{sign}(\sigma) \sigma. \Lambda$$

qui permet de produire une forme alternee : il correspond a l'action du groupe $\mathfrak{S}_n \curvearrowright \operatorname{Mult}^{(n)}(V,K)$ par permutation des variables et au morphisme

$$sign: \mathfrak{S}_n \mapsto \{\pm 1\}.$$

On definit egalement

$$\bullet_1: \Lambda \mapsto \sum_{\sigma \in \mathfrak{S}_n} \sigma. \Lambda$$

correspondant au morphisme trivial

$$1:\mathfrak{S}_n\mapsto 1.$$

Exercice 6. On suppose n=2 et soit V un EV de dimension $d \ge 2$ et de base $\mathscr{B} = \{\mathbf{e}_1, \cdots, \mathbf{e}_d\}.$

- 1. Que valent $(\mathbf{e}_1^* \otimes \mathbf{e}_2^*)_{\text{sign}}$ et $(\mathbf{e}_1^* \otimes \mathbf{e}_2^*)_1$ comme sommes de produits tensoriels de formes lineaires?
- 2. Que valent $(\mathbf{e}_1^* \otimes \mathbf{e}_1^*)_{\text{sign}}$ et $(\mathbf{e}_1^* \otimes \mathbf{e}_1^*)_1$ comme sommes de produits tensoriels de formes lineaires?

Exercice 7. On suppose n=3 et soit V un EV de dimension $d\geqslant 3$ et de base $\mathscr{B}=\{\mathbf{e}_1,\cdots,\mathbf{e}_d\}.$

- 1. Que valent $(\mathbf{e}_1^* \otimes \mathbf{e}_2^* \otimes \mathbf{e}_3^*)_{\text{sign}}$ et $(\mathbf{e}_1^* \otimes \mathbf{e}_2^* \otimes \mathbf{e}_3^*)_1$ comme sommes de produits tensoriels de formes lineaires?
- 2. Que valent $(\mathbf{e}_1^* \otimes \mathbf{e}_1^* \otimes \mathbf{e}_3^*)_{\text{sign}}$ et $(\mathbf{e}_1^* \otimes \mathbf{e}_1^* \otimes \mathbf{e}_3^*)_1$ comme sommes de produits tensoriels de formes lineaires?

Exercice 8. Soit V un EV de dimension d=2 et de base $\mathscr{B}=\{\mathbf{e}_1,\mathbf{e}_2\}$. Soient v_1,v_2 deux vecteurs de coordonnees

$$v_i = \sum_{j=1}^2 x_{ij} \mathbf{e}_j.$$

1. Exprimer $(\mathbf{e}_1^* \otimes \mathbf{e}_2^*)_{\text{sign}}(v_1, v_2)$ en fonction des $(x_{ij})_{i,j \leq 2}$

Exercice 9. Soit V un EV de dimension d=3 et de base $\mathscr{B}=\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$. Soient v_1,v_2,v_3 deux vecteurs de coordonnees

$$v_i = \sum_{j=1}^3 x_{ij} \mathbf{e}_j.$$

1. Exprimer $(\mathbf{e}_1^* \otimes \mathbf{e}_2^* \otimes \mathbf{e}_3^*)_{\text{sign}}(v_1, v_2, v_3)$ en fonction des $(x_{ij})_{i,j \leq 3}$.

Exercice 10. On considere le cas n general.

- 1. Montrer que \bullet_1 envoie $\operatorname{Mult}^{(n)}(V,K)$ sur $\operatorname{Sym}^{(n)}(V;K)$ (on a vu dans le cours que $\bullet_{\operatorname{sign}}$ envoie $\operatorname{Mult}^{(n)}(V,K)$ sur $\operatorname{Alt}^{(n)}(V;K)$).
- 2. Montrer que $\operatorname{Sym}^{(n)}(V;K)$ est contenu dans le noyau de $\bullet_{\operatorname{sign}}$ et que $\operatorname{Alt}^{(n)}(V;K)$ est contenu dans le noyau de \bullet_1 (utiliser l'exercice 4).
- 3. Calculer Λ_{sign} si Λ est alternee.
- 4. Calculer Λ_1 si Λ est symetrique.

Matrices de permutation

Exercice 11. Soit V un K-ev de dimension d et $\mathscr{B} = \{\mathbf{e}_1, \dots, \mathbf{e}_d\}$ une base de V fixee. Soit $\sigma : \{1, \dots, d\} \mapsto \{1, \dots, d\}$ une permutation. On a vu dans la serie precedente qu'on peut lui associe une unique application lineaire φ_{σ} qui envoie chaque vecteur \mathbf{e}_i sur le vecteur $\mathbf{e}_{\sigma(i)}$ pour $i \leq d$:

si
$$v = x_1 \mathbf{e}_1 + \dots + x_d \mathbf{e}_d$$
 alors $\varphi_{\sigma}(v) = x_1 \mathbf{e}_{\sigma(1)} + \dots + x_d \mathbf{e}_{\sigma(d)}$.

- 1. Que vaut $\varphi_{\sigma}^*(\mathbf{e}_1^* \otimes \cdots \otimes \mathbf{e}_d^*)$ (montrer que c'est un produit tensoriel de formes lineaires explicites)?
- 2. Montrer que $\det(\varphi_{\sigma}) = \operatorname{sign}(\sigma)$, soit par un calcul direct soit en montrant que pour τ une transposition $\det(\varphi_{\tau}) = -1$ et en considerant l'application

$$\sigma \mapsto \det(\varphi_{\sigma})$$

conjointement avec l'exercice 4.