EPFL Lénaïc Chizat

Sections MX-EL-CGC 9 décembre 2024

Analyse I – Série 12 : Réponses

Dans ce document, nous donnons les solutions de certains exercices afin que vous puissiez vérifier vos calculs en autonomie (il ne s'agit pas d'un corrigé complet).

Exercise 2. (a) $f(x) = \frac{2}{3} \sum_{n=0}^{\infty} (-4/3)^n x^n$ pour $x \in]-3/4, 3/4[$. (b) $f(x) = \frac{2}{11} \sum_{n=0}^{\infty} (-4/11)^n (x-2)^n$ pour $x \in]-3/4, 19/4[$.

Exercice 3. (a) $f(x) = e \cdot \sum_{n=0}^{\infty} \frac{2^n}{n!} x^n$ pour $x \in \mathbb{R}$, (b) $f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{3^{n+1}} (x-2)^n$ pour -1 < x < 5.

Exercice 4.

(a)

$$\operatorname{Log}\left(\frac{1-x}{1+x}\right) = -2x - \frac{2}{3}x^3 - \frac{2}{5}x^5 - \frac{2}{7}x^7 + x^7\varepsilon(x)$$

(b)

$$tg(x) = x + \frac{x^3}{3} + \frac{2x^5}{15} + x^5 \varepsilon(x)$$

(c)

$$Arctg(x) = x - \frac{x^3}{3} + \frac{x^5}{5} + x^5 \varepsilon(x)$$

(d) $\sqrt{1 + \lg(x)} = 1 + \frac{x}{2} - \frac{x^2}{2} + x^2 \varepsilon(x)$

Exercice 5. (a) Faux (b) Vrai (c) Vrai

Exercice 6. (a) Vrai (b) Faux (c) Vrai (d) Faux

Exercice 8.

(a)

$$\frac{3}{2}\text{Log}(1+x^2) + 4\text{Arctg}(x) + C$$

(b)

$$\frac{1}{2\cos(x)^2} + C$$

(c)

$$\frac{\sqrt{3}}{3}\operatorname{Arcsin}\left(\frac{\sqrt{3}}{2}x\right) + C$$

(d)

$$\frac{1}{2}(x + e^{-x}) + C$$

Exercice 9. La limite est 2.