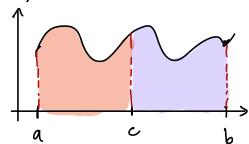
<u>Propriété 3:</u> (Relation de Chasles). Si c E [a,b], alors

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$



Propriété 4: (Monotonie de l'intégrale)
$$Si f(x) \ll g(x)$$
, $\forall x \in [a,b]$ alon $\int_a^b f(x) dx \ll \int_a^b g(x) dx$

can
$$\int \langle |j| et - \int \langle |j|$$

Propriété 5:

Thm (Théorème de la valeur moyenne). Soit
$$f \in C^{\circ}([a,b])$$
, alors $\exists u \in [a,b]$ tel que $\int_{a}^{b} f(x) dx = (b-a) \cdot f(u)$

$$\underline{Rmq}: \int_{a}^{b} \int_{a}^{b} \int_{a}^{b} f(x) dx$$
 et la moyenne de $\int_{a}^{b} \sin \left[a, b\right]$.

= Gin 05/12

Thm (Thénème de la valeur may enne généralisé).

Scient
$$f,g \in C^{\circ}([a,b])$$
 avec $g(x) \ge 0$, $\forall x \in [a,b]$. Alone $\exists u \in [a,b]$ tel que:
$$\int_{a}^{b} f(x) g(x) dx = \int_{a}^{b} g(x) dx$$

Pour g(x) = 1, $\forall x \in [a, b]$, on retrouve le thur. de la valeur moyenne.

Preuve: Soit m et M le min et le max de g sur [a,b]. [Propriétés des fauchions continues sur un intervalle] Comme $g(x) \gg 0$, $\forall x \in [a,b]$,

$$m \cdot g(x) \ll g(x) \cdot g(x) \ll \Pi \cdot g(x)$$
, $\forall x \in [a, b]$

Par monovonie de l'intégrale:

 $\int_a^b m \cdot g(x) dx \ll \int_a^b f(x) \cdot g(x) dx \ll \int_a^b \Pi \cdot g(x) dx$

Par linéarité de l'intégrale:

 $m \int_{a}^{b} g(x) dx \ll \int_{a}^{b} f(x) \cdot g(x) dx \ll 11 \cdot \int_{a}^{b} g(x) dx.$ Donc $\exists v \in [m, M]$ tel que $\int_{a}^{b} f(x) \cdot g(x) dx = v \cdot \int_{a}^{b} g(x) dx$ Par le thm. des valeurs intermédiaires $\exists u \in [a, b]$ tel que $f(u) = v \cdot D$ On conclut donc que $\int_{a}^{b} f(x) \cdot g(x) dx = f(u) \cdot \int_{a}^{b} g(x) dx$

8.4 Thm. fordamental de l'analyse

Thm: Soit $\int \mathcal{E} C^{\circ}([a,b])$, (a < b). Alon:

- (i) La faction $G: [a,b] \rightarrow \mathbb{R}$ définie par $G(x) = \int_{a}^{x} f(t) dt$ et une primitive de f, c'et-à-dire G'(x) = f(x), $\forall x \in [a,b]$.
- (ii) Soit $F: [a,b] \rightarrow \mathbb{R}$ est une primitive de f, alors on a; $\int_{a}^{b} f(x) dx = F(b) - F(a)$

(ce thm. joit le lien entre intégrales définies et indéfinies) aire sous une combe primitives.

Preuve:

(i) Soit $x \in Jq$, $b \in Jq$ (pour x = a ou x = b, faire le nême naisonnement avec les limites a' gauche on a' droite). On a :

$$G'(x) = \lim_{h \to 0} \frac{G(x+h) - G(x)}{h}$$

=
$$\lim_{h\to 0} \frac{1}{h} \left(\int_{a}^{x+h} f(t)dt - \int_{a}^{x} f(t)dt \right) \left(\int_{a}^{x+h} f(t)dt = \int_{a}^{x} f(t)dt + \int_{x}^{x+h} f(t)dt \right)$$

=
$$\lim_{h\to 0} \frac{1}{h} \cdot (h \cdot f(u_n))$$
 arec $u_n \in [x, x+h]$ par Hrm. de la vakun moyemu

=
$$\lim_{n\to 0} g(u_n) = g(x)$$
 can $\lim_{n\to 0} u_n = x$ et g est continue.

(ii) Comme
$$G(x) = \int_{a}^{x} f(t) dt$$
 et une primitive de f (on view de le montrer),
 $\exists C \in \mathbb{R}$, tel que $F(x) = G(x) + C$, $\forall x \notin [a, b]$.

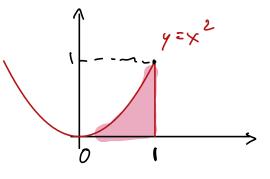
Que vaux
$$C$$
?
.En a: $F(a) = \int_a^a \int_a^{(r)} dr + C donc C = F(a)$.

Ainsi
$$\int_a^b \int (r) dr = F(b) - C = F(b) - F(a)$$

=) le calcul d'intégnales revient à la recherche de primitives.
$$\int_{a}^{b} \{(\mathbf{r}|d\mathbf{r} = [F(t)]_{a}^{b} := F(b) - F(a)\}$$

$$\int_{a}^{b} \{(r)dr = [F(t)]^{b} := F(b) - F(a)$$

Exemple:
$$\int_0^1 x^2 dx = \left[\frac{1}{3}x^3\right]_0^1 = \frac{1}{3}$$
.



$$Ex:$$
 1) $\int_0^1 a^x dx = \int_0^1 exp(x log(a)) dx$ on $a>0$ et $a \ne 1$ paramètre.

$$= \frac{1}{\log(n)} \int_{0}^{1} \log(a) \cdot \exp(x \log(a)) dx$$

$$= \frac{1}{\log(a)} \left[\exp(x \log(a)) \right]_{0}^{1} = \frac{1}{\log(a)} (a-1).$$
The

$$z) \int_{0}^{\sqrt{4}} \tan(x) dx = -\int_{0}^{\sqrt{4}} \frac{\sin(x)}{\cos(x)} dx \quad \text{as recommont } \begin{cases} \frac{1}{2} = (\log f)' \text{ avec } f = \cos f \end{cases}$$

$$= -\left[\log \cos(x)\right]_{0}^{\sqrt{4}}$$

$$= -\log\left(\frac{1}{\sqrt{2}}\right) + \log(1) = \frac{1}{2}\log(2) .$$

3)
$$\int_{0}^{\sqrt{2}} \cos(x)^{2} dx = \int_{0}^{\sqrt{2}} \frac{1}{2} (1 + \cos(2x)) dx$$

$$= \left[\frac{1}{2} \times + \frac{1}{4} \sin(2x) \right]_{0}^{\sqrt{2}} = \frac{\pi}{4}$$

8.5.2 Changement de variable

Thm: Soit $f \in C^{\circ}(I)$, I intervalle et $[a,b] \subset I$. Soit $Y : [a,\beta] \to I$ telle que $Y \in C'([a,\beta])$ et $\{Y(a) = a\}$ Alors: $\int_{a}^{b} f(x) dx = \int_{a}^{\beta} f(Y(H)) Y'(H) dt$

Mnémotechnique: x = P(t)dx = P'(t) dt + changer les bornes d'intégration.

Prenve: Sait Fune primitive de f sur I et G=Fof. Pour t E[a, β], on a:

$$G'(t) = Q'(t) \cdot F'(Y(t)) = Q'(t) \cdot J(Y(t))$$

Done $\int_{\alpha}^{\beta} J(Y(t))Y'(t) dt = \int_{\alpha}^{\beta} G'(t) dt = G(\beta) - G(\alpha) = F(Y(\beta)) - F(Y(\alpha)) = \int_{Q(\alpha)}^{Q(\beta)} J(X) dx$

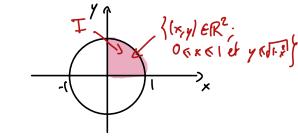
Exemple:
$$I = \int_0^1 \sqrt{1-x^2} dx$$

$$form \)x = sin(u)$$

$$dx = con(u) du$$

Alos:
$$I = \int_{0}^{\pi/2} \sqrt{1 - \sin(u)^{2}} \cos(u) du$$

$$= \int_{0}^{\pi/2} \cos(u)^{2} du = \frac{\pi}{4}$$



Pan les intégrales indéfinies (calcul de primitires):

Thm: Sait I, J deux intervalles, $f \in C^{\circ}(I)$ et $\ell: I \to J$, $\ell \in C^{\circ}(I)$ et telle que ℓ est bijective. Soit G une primitive de $(f \circ \ell) \cdot \ell'$ alors $G \circ \ell^{-1}$ est une primitive de f sur I.

Preuve: Soit Fure primitive de f son I, a & I:

$$F(x) = \int_{a}^{x} \int_{a}^{(r)} dr + C = \int_{e^{-1}(a)}^{(1)} \int_{e^{-1}(a)}^{(2)} \int_{e^{$$

=
$$G(\ell'(x)) - G(\ell'(a)) + C$$

contente (independent de x).

Donc Gol'et une primitie de f.

Exemple:
$$F(x) = \int \sqrt{1-x^2} dx$$

On pose
$$x = \sin(u) = \ell(u)$$
 ; $\ell : \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \rightarrow \left[-1, 1 \right]$.

Une primitive de (fot). l'= cos² est (cf. ci-dessus);

$$G(u) = \int cos^2(u) du = \frac{1}{2} \int (1 + cos(2u)) du$$

$$= \frac{1}{2}u + \frac{1}{4}\sin(2u) + C , C \in \mathbb{R}$$

$$= \frac{1}{2}u + \frac{1}{2} \sin(u) \cos(u) + C$$

$$pam \quad u \in \begin{bmatrix} -\frac{\pi}{2}, \frac{\pi}{2} \end{bmatrix}.$$

(trigo:
$$\sin(2\alpha) = 2 \sin(\omega) \cos(\alpha)$$
).

Donc
$$F(x) = G(Y^{-1}(x))$$

=
$$\frac{1}{2}$$
 drcsin(x) + $\frac{1}{2}$ sin (arcsin(x)) · cos (arcsin(x)) + C
= $\frac{1}{2}$ arcsin(x) + $\frac{1}{2}$ x $\sqrt{1-x^2}$ + C

8.5.3 Intégration par parties

Thm: Soit
$$f, g \in C'([a, b])$$
 alon:

$$\int_{a}^{b} f'(x) g(x) dx = \left[f(x)g(x) \right]_{a}^{b} - \int_{a}^{b} f(x) g'(x) dx$$

Preuve: On a
$$(f \cdot g)'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$
. Done
$$\int_{a}^{b} f'(x) g(x) dx + \int_{a}^{b} f(x) g(x) dx = \int_{a}^{b} (f \cdot g)'(x) dx = \left[f(x) \cdot g(x) \right]_{a}^{b}$$

Exemples:

1)
$$\int_0^1 x e^x dx = \left[xe^x\right]_0^1 - \int_0^1 e^x dx$$

2) $\int_0^1 x^2 e^x dx = \left[x^2 e^x\right]_0^1 - 2\int_0^1 x e^x dx$

2) $\int_0^1 x^2 e^x dx = \left[x^2 e^x\right]_0^1 - 2\int_0^1 x e^x dx$

$$2) \int_{0}^{1} x^{2} e^{x} dx = \left[x^{2} e^{x}\right]_{0}^{1} - 2 \int_{0}^{1} x e^{x} dx$$

$$= e - 2 \cdot 1 = e - 2$$