Rmq: an ponna se remener au ces xo=0 pour un changement de variable.

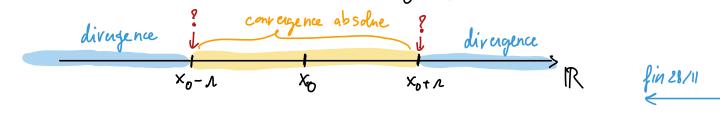
Quetion: convergence et valeur de la somme en fanction de x?

Thm: Il existe $\Lambda \in [0, +\infty]$ (signifie soit $\Lambda \in \mathbb{R}_+$ soit $\Lambda = +\infty$) tel que la série entière $\sum_{n=0}^{+\infty} a_n (x-x_0)^n$. Converge absolument poin $|x-x_0| < \Lambda$.

• et diverge poin $|x-x_0| > \Lambda$.

Kemarques:

- le nombre n est appelé le <u>rayon</u> de <u>convergence</u> de la Série entière. le Thm. ne dit rien pour le cas $1 \times \times_0 1 = n$. Si $n = +\infty$: la Série <u>converge</u> absolument pour tout $\times \in \mathbb{R}$ Si n = 0: la Série ne converge que pour $\times = \times_0$ (et alon $S = a_0$)



 $\frac{1}{\text{hm}}$: On or $\frac{1}{\lambda} = \lim_{k \to +\infty} |a_k|^{l/k}$ (avec la convention $0 = \frac{1}{100}$ et $+\infty = \frac{1}{0}$)

De plus, si les limites existent, on a: lim | ax| = 1 (Cauchy)

· lim | akir = 1 (O'Alembert)

Prenve: $S = \sum_{k=0}^{+\infty} a_k (x - x_0)^k$ Critère de la lim sup: $q = \lim_{k \to +\infty} |b_k|^{lk}$

= lim sup |x-x0| · |ax| = |x-x0| lim sup |ax) VX

-> La série | converge absolument si
$$q < 1 \iff |x-x_0| < \frac{1}{\limsup_{k \to +\infty} |\alpha_k|^{2k}} = 1$$

divage si $q > 1 \iff |x-x_0| > \frac{1}{\limsup_{k \to +\infty} |\alpha_k|^{2k}} = 1$

-> Conseil: se ramener aux artils d'étude des séries pour déterminer 2.

7.4 Fonctions définies par les séries entières

Si r E] 0, + =>], on définit la faction "somme de la série entière": f(x) = = au (x-x0)"

défine sur D=Jxo-1, xo+1 [(et éventuellement en xo-1 on xo+1).

Thm (dérivée des séries enfières). On peut dériver "terme à terme" la série entière, c'est-à-dire, pan x ED an a

$$\begin{cases} f'(x) = \sum_{k=1}^{+\infty} a_k \cdot k \cdot (x - x_0)^{k-1} \\ = \sum_{k=0}^{+\infty} a_{k+1} \cdot (k+1) \cdot (x - x_0)^k \end{cases}$$

et le ray on de convergence de cette série entière et r. Plus généralement

on a
$$\int \mathcal{E} C^{\infty}(]x_{o}-\lambda, x_{o}+\lambda[])$$
 et $f^{n} = \int_{k-1}^{k} a_{k} \cdot a_{k$

Explication pour le rayon de convergence :

$$\frac{1}{n} = \lim_{k \to +\infty} \sup_{k \to +\infty} |a_k|^{1/k} = \lim_{k \to +\infty} \sup_{k \to +\infty} |a_k|^{1/k} = \frac{1}{n \cdot \det_{k \to +\infty}}$$

$$\exp(\frac{1}{n} \log(k)) \xrightarrow{k \to +\infty} 1$$

Remarque: de (*) on déduit que $\int_{0}^{(n)} (x_{0}) = n! \cdot a_{n} \iff a_{n} = \frac{\int_{0}^{(n)} (x_{0})}{n!}$ \Rightarrow c'est le coefficient donné par la formule de Taylor.

-> ceci montre aussi l'unicité des coefficients de la série entière.

```
7.5 Séries de Taylor d'une fonction
Soit I C R un intervalle ouvert, xo E I et f E CO (I).
   Def:, la série de Taylor de f en \times, et: \sum_{\kappa=0}^{+\infty} \int_{\kappa!}^{(\kappa)} (x-x_0)^{\kappa}.
             . La <u>série de Mac-Laurin</u> : cas particulier ai x<sub>0</sub> = 0
    Quartien: quand est-ce que l'an a f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(x_0)}{\kappa!} (x-x_0)^{\kappa}?

Quand c'est le cas sur I, on dit que f est développable en série entière.
  Etudians un exemple: Soit f(x) = \frac{1}{1-x}, x_0 = 0, D(f) = \mathbb{R} \setminus \{1\}
     Calculon les dérivées succenives de f en 0: pour x \in D: f(x) = (1-x)^{-1}, \quad f'(x) = (1) \cdot (-1) \cdot (1-x)^{-2}, \quad f''(x) = (2) \cdot (-1) \cdot (1-x)^{-3}, \quad \text{etc} par nécumence : f^{(n)}(x) = n! \cdot (1-x)^{-n-1} \text{ danc } f^{(n)}(0) = n!
       Donc la série de Taylor de f et : \sum_{k=0}^{+\infty} \frac{f^{(k)}(0)}{k!} \times k = \sum_{k=0}^{+\infty} x^k (série géométrique). 

La série converge absolument pour x \in ]-1, [[] et \sum_{k=0}^{+\infty} x^k = \frac{1}{1-x} = f(x)
     as Donc of est développable en série entière sur ]-1, I[.
      △ la fanction est définie sur un intervalle ples grand que ]-1,1[.
```

Pan ex: $f(2) = -1 + \sum_{k=0}^{\infty} 2^k$ diverge.

- Autre technique plus générale pour étudier le lien ontre f et sa série de Taylor: Formule de Taylor, pan $\times \in]-1, |[::](x) = \sum_{k=0}^{n} x^{k} + \lambda_{n}(x)$

on $\Lambda_n(x) = \frac{1}{(n+1)!} \int_{0}^{(n+1)} (u_{x,n}) x^{n+1}$ on $u_{x,n} \in [0, x[$ Taylor

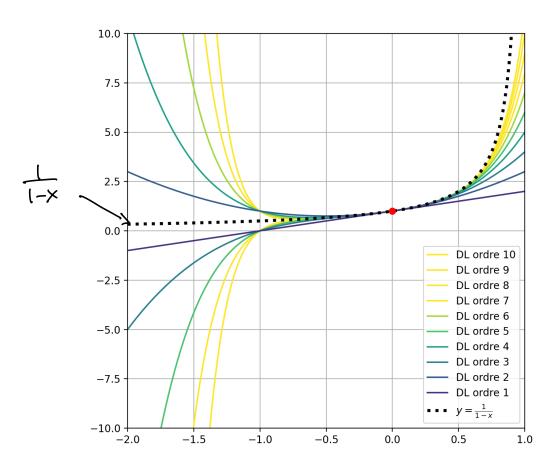
Danc $N_n(x) = \frac{1}{(n+1)!} (n+1)! (1-u_{nx})^{n-2} \times^{n+1} = \frac{1}{1-u_{nx}} (\frac{x}{1-u_{nx}})^{n+1}$

Soit $I = \frac{1}{3}, \frac{1}{3} \left[Pan \times EI, a a u_{n,x} \in \frac{1}{3}, \frac{1}{3} \right]$ et danc

$$| \lambda_n(x) | \sqrt{\frac{1}{1-\frac{1}{3}}} \left(\frac{\frac{1}{3}}{1-\frac{1}{3}} \right)^{n+1} = \frac{3}{2} \left(\frac{1}{2} \right)^{n+1} \xrightarrow[n \to +\infty]{} 0$$

Donc
$$J(x) = \lim_{n \to +\infty} \left(\sum_{k=0}^{n} x^{k} + \Lambda_{n}(x) \right) = \lim_{n \to +\infty} \sum_{k=0}^{n} x^{k} + \lim_{n \to +\infty} \Lambda_{n}(x)$$

$$= \sum_{k=0}^{+\infty} x^{k} + 0 \quad \text{pair } x \in J^{-\frac{1}{3}, \frac{1}{3}} [$$

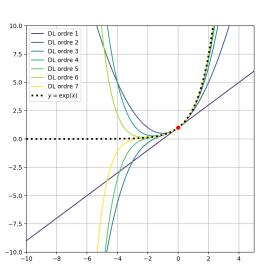


Avec une méthode similaire (avec $x_0 = 0$), on houve les développements en séries entières suivants :

$$\frac{1}{1+x} = \sum_{k=0}^{+\infty} (-1)^k x^k , x \in]-1,1[$$

•
$$\log(1+x) = \sum_{\kappa=1}^{\kappa=1} (-1)^{\kappa+1} \frac{x^{\kappa}}{\kappa} , \quad \kappa \in]-1,]$$

•
$$\exp(x) = \sum_{k=0}^{\infty} \frac{1}{k!} \times^{k}$$
, $x \in \mathbb{R}$



•
$$\sinh(x) = \sum_{k=0}^{+\infty} \frac{1}{(2k+1)!} \times 2k+1$$
, $\times \in \mathbb{R}$

$$coh(x) = \sum_{k=0}^{\infty} \frac{1}{(2k)!} \times {}^{2k}, \quad x \in \mathbb{R}$$

$$\sin\left(x\right) = \sum_{\kappa=0}^{+\infty} \frac{\left(-1\right)^{\kappa}}{\left(2\kappa+1\right)!} \times 2\kappa+1 \qquad , \quad x \in \mathbb{R}$$

.
$$COM(X) = \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k)!} \times {}^{2k}$$
, $\times \in \mathbb{R}$

$$(\alpha \in \mathbb{R}^*)$$
. $(1+x)^{\alpha} = \sum_{\kappa=0}^{+\infty} \frac{\alpha(\alpha-1)...(\alpha-\kappa+1)}{\kappa!} \times^{\kappa}, \quad \times \in]-1,1[$.

Aparté: l'exponentielle complexe et la formule d'Euler

On peut définir l'exponentielle complexe pour Z E C par :

$$\exp(z) = \sum_{k=0}^{+\infty} \frac{z^k}{k!} \left(\text{converge pan Vow } t \in \mathbb{C} \right)$$

On peut vérifie que exp $(z_1+z_2)=\exp(z_1)\cdot\exp(z_2)$ $\forall z_1,z_2\in \mathbb{C}$.

Pom Z=iO, OER aa;

$$\exp(i\theta) = 1 + \frac{(i\theta)}{1!} + \frac{(i\theta)^{2}}{2!} + \frac{(i\theta)^{3}}{3!} + \frac{(i\theta)^{4}}{4!} + \frac{(i\theta)^{5}}{5!} + \dots$$

$$= 1 + i\theta - \frac{\theta^{2}}{2!} - i\frac{\theta^{3}}{3!} + \frac{\theta^{4}}{4!} + i\frac{\theta^{5}}{5!} + \dots$$

=
$$co(0) + i sin(0)$$

En particulier, par x = T, a obtient : e = -1 (identité Euler).

$$\int_{0}^{\infty} (x) = \begin{cases} e^{-ix} & \text{si } x > 0 \\ 0 & \text{si } x < 0 \end{cases}$$

On a $f \in C^{\infty}(\mathbb{R})$, en effet (le seul paint délicat est $x_0=0$):

(i)
$$\lim_{x\to 0^-} f(x) = \lim_{x\to 0^+} f(x) = 0 \Rightarrow \int f(x)(R)$$

$$\begin{cases}
\frac{1}{x^2}e^{-\frac{1}{x}} & \text{si } x > 0
\end{cases}$$

$$\begin{cases}
\frac{1}{x^2}e^{-\frac{1}{x}} & \text{si } x > 0
\end{cases}$$

$$\begin{cases}
\frac{1}{x^2}e^{-\frac{1}{x}} & \text{si } x > 0
\end{cases}$$

$$\begin{cases}
\frac{1}{x^2}e^{-\frac{1}{x}} & \text{si } x > 0
\end{cases}$$

$$\begin{cases}
\frac{1}{x^2}e^{-\frac{1}{x}} & \text{si } x > 0
\end{cases}$$

Détail: paran
$$y = \frac{1}{x}$$
. On a lim $\frac{1}{x^2}e^{-1/x} = \lim_{y \to +\infty} \frac{e^{-y}}{y} = \lim_{y \to +\infty} \frac{y^2}{e^y} = 0$ (croissance carpanés)

Donc par le thm. de continuité de la dérivée, f'(0)=0. Ainsi $f \in C'(\mathbb{R})$. (iii) On peut monther ainsi, par récurrence que $f \in C^{\infty}(\mathbb{R})$ et que $\forall k \in \mathbb{N}$, $f^{(k)}(0)=0$.