Analyse I – Série 12 – Corrigé

Echauffement. (Séries de Mac-Laurin)

Trouver les séries de Mac-Laurin et leurs rayons de convergence pour les fonctions suivantes :

a)
$$f(x) = \sin(x)$$

b)
$$f(x) = \cos(x)$$

c)
$$f(x) = e^x$$

d)
$$f(x) = e^{-x}$$

e)
$$f(x) = \operatorname{sh}(x)$$

f)
$$f(x) = \operatorname{ch}(x)$$

$$g) f(x) = Log(1+x)$$

$$h) f(x) = Log(1 - x)$$

Sol.: On part des formules vues en cours :

a)
$$\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}, \quad x \in \mathbb{R}$$
 b) $\cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}, \quad x \in \mathbb{R}$

b)
$$\cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}, \quad x \in \mathbb{R}$$

$$c) e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n, \quad x \in \mathbb{R}$$

d)
$$e^{-x} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} x^n, \quad x \in \mathbb{R}$$

$$e) \ \operatorname{sh}(x) = \frac{1}{2} \left(e^x - e^{-x} \right) = \frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{n!} \left(\underbrace{1 - (-1)^n}_{= \begin{cases} 0, \ n \ pair \\ 2, \ n \ impair \end{cases}} \right) x^n = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} x^{2n+1}, \quad x \in \mathbb{R}$$

$$f) \ \operatorname{ch}(x) = \frac{1}{2} \left(e^x + e^{-x} \right) = \frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{n!} \left(\underbrace{1 + (-1)^n}_{= \begin{cases} 0, \ n \ impair \\ 2, \ n \ pair} \right)} x^n = \sum_{n=0}^{\infty} \frac{1}{(2n)!} x^{2n}, \quad x \in \mathbb{R}$$

g)
$$\text{Log}(1+x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} x^{n+1}, \quad x \in]-1,1]$$

$$h) \ \operatorname{Log}(1-x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} (-x)^{n+1} = \sum_{n=0}^{\infty} \frac{(-1)^{2n+1}}{n+1} \, x^{n+1} = \sum_{n=1}^{\infty} \frac{-1}{n} \, x^n, \quad x \in [-1,1[$$

Exercice 1. (Formules de dérivées)

Vérifier les identités suivantes à l'aide des séries de Mac-Laurin :

a)
$$\frac{d}{dx}e^x = e^x$$

b)
$$\frac{d}{dx}\sin(x) = \cos(x)$$

c)
$$\frac{d}{dx}\cos(x) = -\sin(x)$$

$$d) \frac{d}{dx} \operatorname{Log}(1+x) = \frac{1}{1+x}$$

Sol.:

Notez que dans les exemples ci-dessous on peut échanger la dérivation et la somme infinie parce qu'il s'agit de séries entières qui convergent, mais gardez à l'esprit que cet échange n'est pas toujours autorisé dans le cas général. Pour la série de Mac-Laurin $f(x) = \sum_{n=0}^{\infty} a_n x^n$ on a donc

$$f'(x) = \frac{d}{dx} \left(\sum_{n=0}^{\infty} a_n x^n \right) = \sum_{n=0}^{\infty} a_n \frac{d}{dx} (x^n).$$

a)
$$\frac{d}{dx}e^x = \frac{d}{dx}\left(\sum_{n=0}^{\infty} \frac{1}{n!}x^n\right) = \sum_{n=1}^{\infty} \frac{1}{(n-1)!}x^{n-1} = \sum_{n=0}^{\infty} \frac{1}{n!}x^n = e^x$$

b)
$$\frac{d}{dx}\sin(x) = \frac{d}{dx}\left(\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!}x^{2n+1}\right) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!}x^{2n} = \cos(x)$$

c)
$$\frac{d}{dx}\cos(x) = \frac{d}{dx}\left(\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!}x^{2n}\right) = \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)!}x^{2n-1} = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2n+1)!}x^{2n+1} = -\sin(x)$$

$$d) \ \frac{d}{dx} \log(1+x) = \frac{d}{dx} \left(\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} x^{n+1} \right) = \sum_{n=0}^{\infty} (-1)^n x^n = \frac{1}{1+x}, \quad |x| < 1 \quad (\text{s\'erie g\'eom\'etrique})$$

Exercice 2. (Séries entières)

Déterminer le développement en série entière de la fonction $f(x) = \frac{2}{3+4x}$ autour de a et déterminer l'intervalle de convergence pour

a)
$$a = 0$$
 b) $a = 2$

Sol.: On utilise que le développement de $f(z) = \frac{1}{1-z}$ en série entière est $f(z) = \sum_{k=0}^{\infty} z^k$ pour tout $z \in]-1,1[$.

1. On peut récrire

$$f(x) = \frac{2}{3+4x} = \frac{2}{3} \cdot \frac{1}{1+\frac{4}{2}x} \ .$$

Ainsi, en posant $z:=-\frac{4}{3}x$, on obtient que son développement en série entière est

$$f(x) = \frac{2}{3} \cdot \sum_{n=0}^{\infty} \left(-\frac{4}{3} \right)^n x^n$$
 pour $x \in \left] -\frac{3}{4}, \frac{3}{4} \right[$.

2. De faèon similaire, on peut récrire

$$f(x) = \frac{2}{3+4x} = \frac{2}{11+4(x-2)} = \frac{2}{11} \cdot \frac{1}{1+\frac{4}{11}(x-2)}$$

de telle sorte qu'en posant $z:=-\frac{4}{11}(x-2)$, on obtient que son développement en série entière est

$$f(x) = \frac{2}{11} \cdot \sum_{n=0}^{\infty} \left(-\frac{4}{11}\right)^n (x-2)^n,$$

avec intervalle de convergence $\left] -\frac{3}{4}, \frac{19}{4} \right[$ (obtenue è partir de $z = -\frac{4}{11}(x-2) \in]-1, 1[$).

Remarque générale : On peut aussi calculer le rayon de convergence de ces séries en utilisant les formules du cours

$$r = 1 / \lim_{n \to \infty} \sqrt[n]{|a_n|} \qquad ou \qquad r = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|.$$
 (1)

si ces limites existent.

Exercice 3. (Séries de Taylor)

Écrire la formule de Taylor à l'ordre n autour de x=a, et la série de Taylor autour de a. Quel est le domaine de convergence de la série de Taylor? Lorsqu'elle converge, est-elle égale à f? (On pourra utiliser la 2ème méthode vue en cours pour $x \mapsto 1/(1-x)$.)

a)
$$f(x) = e^{2x+1}$$
 avec $a = 0$,

b)
$$f(x) = \frac{1}{x+1}$$
 avec $a = 2$.

Sol.: Si $f \in C^{\infty}(I)$, la série de Taylor de f en a est donnée par $S(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$ pour $x \in I$ (S(x) ne coincide pas nécessairement avec f(x)).

1. On a $f^{(n)}(x) = 2^n \cdot e^{2x+1}$ et $f^{(n)}(0) = 2^n \cdot e$. Ainsi le développement limité d'ordre n de f autour de a = 0 est

$$f(x) = \sum_{k=0}^{n} \frac{2^k e}{k!} x^k + R_n(x) \quad avec \quad R_n(x) = \frac{2^{n+1} \cdot e^{2u+1}}{(n+1)!} x^{n+1} \quad pour \ un \ certain \ u \ entre \ 0 \ et \ x.$$

La série de Taylor de f autour de a = 0 est donnée par

$$S(x) = e^{2x+1} = e \cdot \sum_{n=0}^{\infty} \frac{2^n}{n!} x^n$$
 pour tout $x \in \mathbb{R}$

et son rayon de convergence est $R = \infty$.

En outre, étant donné que pour x fixé

$$0 \le |R_n(x)| \le \frac{2^{n+1} \cdot e \cdot \max\{e^{2x}, 1\}}{(n+1)!} |x|^{n+1},$$

et

$$\lim_{n \to \infty} \frac{(2|x|)^{n+1}}{(n+1)!} = 0.$$

il suit que $\lim_{n\to\infty} R_n(x) = 0$ pour tout $x \in \mathbb{R}$. Donc S(x) = f(x) pour tout $x \in \mathbb{R}$.

2. On utilise directement la formule de Taylor. On calcule que

$$f^{(n)}(x) = \frac{(-1)^n \cdot n!}{(x+1)^{n+1}}$$
 et $f^{(n)}(2) = \frac{(-1)^n \cdot n!}{3^{n+1}}$.

D'où le développement limité d'ordre n de f(x) autour de 2:

$$f(x) = \frac{1}{x+1} = \underbrace{\sum_{k=0}^{n} \frac{(-1)^k}{3^{k+1}} (x-2)^k}_{=f_n(x)} + R_n(x)$$

 $où R_n(x) = \frac{(-1)^{n+1}}{u+1} \left(\frac{x-2}{u+1}\right)^{n+1} pour un certain u entre 2 et x.$

Par ailleurs, on peut reconnaitre en f(x) la somme d'une série géométrique. On obtient

$$f(x) = \frac{1}{x+1} = \frac{1}{3+(x-2)} = \frac{1}{3} \cdot \frac{1}{1+\frac{1}{3}(x-2)} = \sum_{n=0}^{\infty} \frac{(-1)^n}{3^{n+1}} (x-2)^n$$

qui converge si et seulement si $-1 < -\frac{1}{3}(x-2) < 1 \Leftrightarrow -1 < x < 5$, et on reconnait la série de Taylor de f qui coincide, dans ce cas, avec f pour -1 < x < 5. Ceci montre par ailleurs que $R_n(x) = \sum_{k=n+1}^{\infty} \frac{(-1)^k}{3^{k+1}} (x-2)^k$ et donc converge vers 0 si et seulement si -1 < x < 5.

Exercice 4. (Séries de Mac-Laurin)

Trouver les trois premiers termes non nuls de la série de Mac-Laurin des fonctions suivantes :

a)
$$f(x) = \text{Log}\left(\frac{1-x}{1+x}\right)$$
 b) $f(x) = \text{tg}(x)$

c) f(x) = Arctg(x) (utiliser la formule de Taylor) d) $f(x) = \sqrt{1 + \text{tg}(x)}$

Sol.:

1. Observons que $\operatorname{Log}\left(\frac{1-x}{1+x}\right) = \operatorname{Log}(1-x) - \operatorname{Log}(1+x)$. Ainsi on peut calculer la série complète de Mac-Laurin en additionnant terme par terme les séries trouvées à l'Echauffement vii) et viii) (ceci est permis puisque les deux séries convergent absolument pour $x \in]-1,1[$). On obtient alors

$$\sum_{n=1}^{\infty} \frac{-1}{n} x^n - \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n = \sum_{n=1}^{\infty} \left(\underbrace{-\frac{1}{n} - \frac{(-1)^{n-1}}{n}}_{=\begin{cases} -2, \ n \ impair \\ 0, \ n \ pair \end{cases}} \right) x^n = \sum_{k=0}^{\infty} \frac{-2}{2k+1} x^{2k+1}.$$

Remarque : Pour obtenir seulement les trois premiers termes de la série, on pourrait aussi utiliser les développements limités adéquats de Log(1-x) et Log(1+x).

2. <u>Méthode 1</u> : Utiliser l'égalité $tg(x) = \frac{\sin(x)}{\cos(x)}$ et les développements limités d'ordre 5 de

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} + x^5 \varepsilon(x) \quad et \quad \cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + x^5 \varepsilon(x).$$

ainsi que celui d'ordre 2 de

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2} x^2 + x^2 \varepsilon(x).$$

Comme $cos(x) - 1 = -\frac{x^2}{2} + \frac{x^4}{24} + x^5 \varepsilon(x)$, on obtient

$$\frac{1}{\cos(x)} = 1 - \left(-\frac{x^2}{2} + \frac{x^4}{24} + x^5 \varepsilon(x) \right) + \left(-\frac{x^2}{2} + \frac{x^4}{24} + x^5 \varepsilon(x) \right)^2 + x^4 \varepsilon(x) = 1 + \frac{x^2}{2} + \frac{5x^4}{24} + x^4 \varepsilon(x)$$

et ainsi

$$tg(x) = \left(x - \frac{x^3}{6} + \frac{x^5}{120} + x^5 \varepsilon(x)\right) \cdot \left(1 + \frac{x^2}{2} + \frac{5x^4}{24} + x^5 \varepsilon(x)\right) = x + \frac{x^3}{3} + \frac{2x^5}{15} + x^5 \varepsilon(x),$$

c'est-à-dire

$$tg(x) = x + \frac{x^3}{3} + \frac{2x^5}{15} + x^5 \varepsilon(x)$$
.

<u>Méthode 2</u>: Utiliser la définition de la série Taylor et donc calculer les dérivées de $f(x) = \operatorname{tg}(x)$ qui sont :

$$f'(x) = \frac{1}{\cos(x)^2}, \qquad f''(x) = \frac{2\sin(x)}{\cos(x)^3}, \qquad f'''(x) = \frac{2 + 4\sin(x)^2}{\cos(x)^4},$$

$$f^{(4)}(x) = \frac{8\sin(x)(2 + \sin(x)^2)}{\cos(x)^5}, \qquad f^{(5)}(x) = \frac{8(2 + 11\sin(x)^2 + 2\sin(x)^4)}{\cos(x)^6},$$

$$f(0) = 0, \qquad f'(0) = 1, \qquad f''(0) = 0, \qquad f'''(0) = 2, \qquad f^{(4)}(0) = 0, \qquad f^{(5)}(0) = 16.$$

Ainsi

$$tg(x) = \frac{1}{1!}x + \frac{2}{3!}x^3 + \frac{16}{5!}x^5 + x^5\varepsilon(x) = x + \frac{x^3}{3} + \frac{2x^5}{15} + x^5\varepsilon(x).$$

3. On calcule

$$f'(x) = \frac{1}{1+x^2}, \qquad f''(x) = \frac{-2x}{(1+x^2)^2}, \qquad f'''(x) = \frac{8x^2}{(1+x^2)^3} - \frac{2}{(1+x^2)^2},$$

$$f^{(4)}(x) = \frac{-48x^3}{(1+x^2)^4} + \frac{24x}{(1+x^2)^3}, \qquad f^{(5)}(x) = \frac{384x^4}{(1+x^2)^5} - \frac{288x^2}{(1+x^2)^4} + \frac{24}{(1+x^2)^3},$$

$$f(0) = 0, \qquad f'(0) = 1, \qquad f''(0) = 0, \qquad f'''(0) = -2, \qquad f^{(4)}(0) = 0, \qquad f^{(5)}(0) = 24.$$

Ainsi

$$Arctg(x) = \frac{1}{1!}x - \frac{2}{3!}x^3 + \frac{24}{5!}x^5 + x^5\varepsilon(x) = x - \frac{x^3}{3} + \frac{x^5}{5} + x^5\varepsilon(x).$$

4. On utilise que pour |x| < 1 on a $(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2}x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{6}x^3 + x^3\varepsilon(x)$ avec $\alpha = \frac{1}{2}$ et $\operatorname{tg}(x) = x + \frac{x^3}{3} + \frac{2x^5}{15} + x^5\varepsilon(x)$. Ainsi $\left(1 + \operatorname{tg}(x)\right)^{1/2} = 1 + \frac{1}{2}\operatorname{tg}(x) - \frac{1}{8}\operatorname{tg}(x)^2 + \frac{1}{16}\operatorname{tg}(x)^3 + \underbrace{\operatorname{tg}(x)^3\varepsilon\left(\operatorname{tg}(x)\right)}_{-x^3\varepsilon(x)},$

où
$$\operatorname{tg}(x)^3 \varepsilon \left(\operatorname{tg}(x)\right) = x^3 \varepsilon(x)$$
 par un argument comme à l'Ex. 5iii) de la Série 11 parce que $\frac{\operatorname{tg}(x)}{x}$ est aussi borné autour de $x=0$. Comme

$$tg(x)^{2} = \left(x + \frac{x^{3}}{3} + \frac{2x^{5}}{15} + x^{5}\varepsilon(x)\right)^{2} = x^{2} + x^{3}\varepsilon(x)$$

et

$$tg(x)^{3} = \left(x^{2} + x^{3}\varepsilon(x)\right)\left(x + \frac{x^{3}}{3} + \frac{2x^{5}}{15} + x^{5}\varepsilon(x)\right) = x^{3} + x^{3}\varepsilon(x)$$

on a finalement

$$\sqrt{1 + \operatorname{tg}(x)} = 1 + \frac{1}{2} \left(x + \frac{x^3}{3} \right) - \frac{1}{8} x^2 + \frac{1}{16} x^3 + x^3 \varepsilon(x) = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{11x^3}{48} + x^3 \varepsilon(x) .$$

Exercice 5. (V/F : Dérivées d'ordre supérieur)

Soient I un intervalle ouvert, $f, g \in C^{n+1}(I)$ et $a \in I$. Soient encore $k, n \in \mathbb{N}$.

V F

- a) Pour $n \ge 6$, si $f^{(k)}(a) = 0$ pour tout $0 \le k < 7$ et $f^{(7)}(a) = 1$, alors f admet un minimum en a.
- b) Si I =]-b, b[pour un b > 0 et f est impaire sur I, alors $f^{(2k)}(0) = 0$ pour $0 \le 2k \le n$. \square
- c) Si $f^{(k)}(a) = g^{(k)}(a) = 0$ pour tout $0 \le k < n$ et $g^{(n)}(a) \ne 0$, alors $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f^{(n)}(a)}{g^{(n)}(a)}$.

Sol.:

a) FAUX.

Le développement limité d'ordre de 7 de f en a est donné par $f(a+h) = \frac{f^{(7)}(a)}{7!}h^7 + h^7 \cdot \varepsilon(h) = h^7(\frac{1}{7!} + \varepsilon(h))$. Comme $\lim_{h\to 0} \varepsilon(h) = 0$, il existe $\varepsilon_1 > 0$ tel que $\frac{1}{7!} + \varepsilon(h) > 0$ du moment que $|h| \le \varepsilon_1$. Comme 7 est impair, on a donc f(a+h) < 0 = f(a) pour $h \in [-\varepsilon_1, 0[$ et f(a+h) > 0 = f(a) pour $h \in [0, \varepsilon_1]$ donc f n'admet pas de minimum local en a.

b) VRAI.

Comme $f \in C^{n+1}(I)$, son développement limité d'ordre n autour de 0 est

$$f(x) = a_0 + a_1 x + \dots + a_n x^n + x^n \varepsilon(x)$$

si bien que

$$f(-x) = a_0 - a_1 x + \dots + (-1)^n a_n x^n + x^n \varepsilon(x).$$

Or, comme f est impaire et $a_k = \frac{f^{(k)}(a)}{k!}$ pour $k = 0, \ldots, n$ par la formule de Taylor (s'il existe un développement limité, il est unique), il suit que

$$a_0 - a_1 x + \dots + (-1)^n a_n x^n + x^n \varepsilon(x) = -a_0 - a_1 x - \dots - a_n x^n + x^n \varepsilon(x)$$

$$\Leftrightarrow a_0 + a_2 x^2 + \dots + a_{2k} x^{2k} + x^n \varepsilon(x) = -a_0 - a_2 x^2 - \dots - a_{2k} x^{2k} + x^n \varepsilon(x)$$

pour tout $x \in I$, d'où le résultat.

c) VRAI.

Les développements limités d'ordre n de f et g autour de a sont

$$f(x) = \frac{f^{(n)}(a)}{n!}(x-a)^n + (x-a)^n \varepsilon(x) \quad et \quad g(x) = \frac{g^{(n)}(a)}{n!}(x-a)^n + (x-a)^n \varepsilon(x)$$

avec $\lim_{x\to a} \varepsilon(x) = 0$. Ainsi

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{\frac{f^{(n)}(a)}{n!}(x-a)^n + (x-a)^n \varepsilon(x)}{\frac{g^{(n)}(a)}{n!}(x-a)^n + (x-a)^n \varepsilon(x)} = \lim_{x \to a} \frac{\frac{f^{(n)}(a)}{n!} + \varepsilon(x)}{\frac{g^{(n)}(a)}{n!} + \varepsilon(x)} = \frac{f^{(n)}(a)}{g^{(n)}(a)}$$

grâce à la propriété de $\varepsilon(x)$.

Exercice 6. (V/F : Fonction définie par un développement limité)

Soient $b, c \in \mathbb{R}$ et soit $f:]-1, 1[\to \mathbb{R}$ telle que $f(x) = bx + cx^2 + x^4 \varepsilon(x)$, où $\lim_{x \to 0} \varepsilon(x) = 0$.

a) Alors f est continue en 0. \square \square b) Si $f \in C^2(]-1,1[)$, alors f''(0)=c. \square \square c) On a $\lim_{x\to 0}\frac{f(x)}{x}=b$. \square \square

V F

d) $f(x)^2 = b^2 x^2 + c^2 x^4 + x^6 \varepsilon(x)$.

Sol.:

- a) VRAI. Clairement f(0) = 0. Et comme $\lim_{x \to 0} \varepsilon(x) = 0$ (donc fini), on a $\lim_{x \to 0} f(x) = 0$ si bien que f est continue en 0.
- b) FAUX. Si f est de classe $C^2(]-1,1[)$, le coefficient a_2 du développement limité de f autour de 0 est $a_2=\frac{f''(0)}{2!}$ par la formule de Taylor. Comme $a_2=c$ ici, il suit que f''(0)=2c.
- c) VRAI. Par un calcul direct on a $\frac{f(x)}{x} = b + cx + x^3 \varepsilon(x)$. Comme $\lim_{x \to 0} \varepsilon(x) = 0$, le résultat en suit.

d) FAUX.

On calcule

$$f(x)^{2} = \left(bx + cx^{2} + x^{4}\varepsilon(x)\right)^{2} = b^{2}x^{2} + 2bcx^{3} + c^{2}x^{4} + 2bx^{5}\varepsilon(x) + 2cx^{6}\varepsilon(x)$$
$$= b^{2}x^{2} + 2bcx^{3} + c^{2}x^{4} + x^{5}\varepsilon(x)$$

parce que $\lim_{x\to 0} 2(b+cx)\varepsilon(x) = 0$. On voit que cette expression de $f(x)^2$ ne correspond pas à celle de l'énoncé rien qu'à cause du terme en x^3 . Noter qu'on pourrait aussi choisir un contre-exemple explicite, par exemple $f(x) = bx + cx^2 + x^5$.

Exercice 7. (Primitives)

Trouver des primitives pour les fonctions f suivantes :

a)
$$f(x) = \sin(x)$$

b)
$$f(x) = \cos(x)$$

c)
$$f(x) = tg(x)$$

$$d) f(x) = e^x$$

e)
$$f(x) = \operatorname{sh}(x)$$

f)
$$f(x) = \operatorname{ch}(x)$$

g)
$$f(x) = \text{Log}(x)$$

$$h) f(x) = \frac{1}{x}$$

i)
$$f(x) = (ax + b)^s$$

 $(s \neq -1)$

j)
$$f(x) = \frac{1}{1+x} + \frac{1}{1-x}$$

k)
$$f(x) = \frac{1}{1 - x^2}$$

1)
$$f(x) = \frac{2x}{1 - x^2}$$

$$\mathbf{m})f(x) = \frac{1}{\mathsf{tg}(x)}$$

n)
$$f(x) = x \exp(x^2)$$

o)
$$f(x) = (ax^p + b)^s x^{p-1}$$

 $(s \neq -1, a, p \neq 0)$

Sol.:

Les primitives F sont définies à une constante $C \in \mathbb{R}$ près.

1.
$$F(x) = -\cos(x) + C$$
 (cf. cours)

2.
$$F(x) = \sin(x) + C$$
 (cf. cours)

3.
$$F(x) = -\log(|\cos(x)|) + C$$
 (cf. cours)

4.
$$F(x) = e^x + C$$
 (cf. cours)

5.
$$F(x) = \int \frac{e^x - e^{-x}}{2} dx = \frac{e^x + e^{-x}}{2} + C = \operatorname{ch}(x) + C$$

6.
$$F(x) = \int \frac{e^x + e^{-x}}{2} dx = \frac{e^x - e^{-x}}{2} + C = \sinh(x) + C$$

7.
$$F(x) = x (\text{Log}(x) - 1) + C$$
 (cf. cours)

8.
$$F(x) = \text{Log}(|x|) + C$$
 (cf. cours)

9.
$$F(x) = \int (ax+b)^s dx = \frac{1}{a} \int a(ax+b)^s dx = \frac{1}{a(s+1)} (ax+b)^{s+1} + C$$
 $car(ax+b)' = a$ et $donc(F(x)) = \frac{1}{a} \int f(\varphi(x)) \varphi'(x) dx = \frac{1}{a} \int f(t) dt$ avec $f(t) = t^s$ et $t = \varphi(x) = ax + b$.

10.
$$F(x) = \int \frac{1}{1+x} dx - \int \frac{-1}{1-x} dx = \text{Log}(|1+x|) - \text{Log}(|1-x|) + C = \text{Log}(\left|\frac{1+x}{1-x}\right|) + C$$

11.
$$F(x) = \int \frac{1}{(1+x)(1-x)} dx = \frac{1}{2} \int \frac{1-x+1+x}{(1+x)(1-x)} dx = \frac{1}{2} \int \left(\frac{1}{1+x} + \frac{1}{1-x}\right) dx$$
$$= \frac{1}{2} \operatorname{Log}\left(\left|\frac{1+x}{1-x}\right|\right) + C$$

12.
$$F(x) = -\int \frac{-2x}{1-x^2} dx = -\text{Log}(|1-x^2|) + C$$
 $car(1-x^2)' = -2x$ (même idée qu'au ix)

13.
$$F(x) = \int \frac{1}{\operatorname{tg}(x)} dx = \int \frac{\cos(x)}{\sin(x)} dx = \operatorname{Log}(|\sin(x)|) + C$$
 $\operatorname{car}\left(\sin(x)\right)' = \cos(x)$ (même idée qu'au ix)

14.
$$F(x) = \frac{1}{2} \int 2x \exp(x^2) dx = \frac{1}{2} \exp(x^2) + C$$
 (même idée qu'au ix)

15.
$$F(x) = \int (ax^p + b)^s x^{p-1} dx = \frac{1}{ap} \int ap \, x^{p-1} (ax^p + b)^s dx = \frac{1}{ap(s+1)} (ax^p + b)^{s+1} + C$$

$$car \ (ax^p + b)' = ap \, x^{p-1} \ (m\hat{e}me \ id\acute{e}e \ qu'au \ ix)$$

Exercice 8. (Intégration immédiate)

Calculer les intégrales indéfinies suivantes, en cherchant directement à reconnaître la dérivée d'une fonction :

a)
$$\int \frac{3x+4}{1+x^2} dx$$
 b) $\int \frac{\sin(x)}{\cos(x)^3} dx$ c) $\int \frac{1}{\sqrt{4-3x^2}} dx$ d) $\int \frac{\sinh(x)}{e^x+1} dx$

Sol.: Dans cette série, on va calculer ces intégrales en les ramenant à des primitives standards. Avec l'avancement du cours vous verrez qu'on pourrait aussi utiliser d'autres méthodes d'intégration.

a) On sépare la somme en deux termes

$$\int \frac{3x+4}{1+x^2} dx = \int \left(\frac{3x}{1+x^2} + \frac{4}{1+x^2}\right) dx = \frac{3}{2} \int \frac{2x}{1+x^2} dx + 4 \int \frac{1}{1+x^2} dx$$
$$= \frac{3}{2} \operatorname{Log}(1+x^2) + 4 \operatorname{Arctg}(x) + C.$$

b) On utilise que la fonction à intégrer est une dérivée en chaîne

$$\frac{\sin(x)}{\cos(x)^3} = -f(\varphi(x)) \cdot \varphi'(x) = -(F(\varphi(x)))',$$

avec $\varphi(x) = \cos(x)$, $f(x) = \frac{1}{x^3}$ et $F(x) = -\frac{1}{2x^2} - C$ une primitive de F. Ainsi

$$\int \frac{\sin(x)}{\cos(x)^3} dx = -\left(-\frac{1}{2\cos(x)^2} - C\right) = \frac{1}{2\cos(x)^2} + C.$$

c) On remarque qu'il faut intégrer une composition avec une fonction affine, c.-à-d.

$$\frac{1}{\sqrt{4-3x^2}} = \frac{1}{2} \frac{1}{\sqrt{1-\frac{3}{4}x^2}} = \frac{1}{2} \cdot \frac{2\sqrt{3}}{3} \cdot \frac{\frac{\sqrt{3}}{2}}{\sqrt{1-\left(\frac{\sqrt{3}}{2}x\right)^2}} \ .$$

Comme $\left(\operatorname{Arcsin}(x)\right)' = \frac{1}{\sqrt{1-x^2}}$, la fonction $\operatorname{Arcsin}(x) + C$ est une primitive de $\frac{1}{\sqrt{1-x^2}}$ et on obtient $\frac{1}{2} \int \frac{dx}{\sqrt{1-\frac{3}{4}x^2}} = \frac{\sqrt{3}}{3} \operatorname{Arcsin}\left(\frac{\sqrt{3}}{2}x\right) + C.$

d) En utilisant la définition du sinus hyperbolique et une identité remarquable, on a

$$\int \frac{\sinh(x)}{e^x + 1} dx = \frac{1}{2} \int \frac{e^x - e^{-x}}{e^x + 1} dx = \frac{1}{2} \int \frac{1 - (e^{-x})^2}{1 + e^{-x}} dx$$
$$= \frac{1}{2} \int (1 - e^{-x}) dx = \frac{1}{2} \left(x + e^{-x} \right) + C.$$

Exercice 9. (Révisions : suites définies par récurrence)

Considérer la suite (a_n) définie par $a_1 := \frac{5}{2}$ et, pour $n \ge 1$,

$$a_{n+1} := \frac{a_n^2 + 6}{5} \, .$$

- a) Montrer que $2 \le a_n \le 3$ pour tout $n \ge 1$,
- b) Montrer que (a_n) est décroissante,
- c) Conclure que (a_n) converge et calculer sa limite.

Sol.:

a) On procède par récurrence. Pour n=1, on a $2 \le a_1 = \frac{5}{2} \le 3$. Supposons alors que $2 \le a_n \le 3$. On a d'une part que

$$a_{n+1} = \frac{a_n^2 + 6}{5} \le \frac{3^2 + 6}{5} = 3$$
,

et d'autre part que

$$a_{n+1} = \frac{a_n^2 + 6}{5} \ge \frac{2^2 + 6}{5} = 2$$

ce qui montre bien que $2 \le a_{n+1} \le 3$.

b) On calcule

$$a_{n+1} - a_n = \frac{a_n^2 + 6}{5} - a_n = \frac{1}{5}(a_n^2 - 5a_n + 6) = \frac{1}{5}\underbrace{(a_n - 3)}_{\le 0}\underbrace{(a_n - 2)}_{\ge 0} \le 0$$

 $donc (a_n)$ est décroissante.

c) Étant minorée (par 2) et décroissante, (a_n) converge : $\lim_{n\to\infty} a_n = \ell$. La valeur de ℓ peut être trouvée en prenant $n\to\infty$ des deux côtés de l'identité $a_{n+1}=\frac{a_n^2+6}{5}$. Comme $a_{n+1}\to\ell$ et $a_n^2\to\ell^2$, ℓ doit satisfaire

$$\ell = \frac{\ell^2 + 6}{5} \, .$$

Cette dernière a pour solutions $\ell_1=2$ et $\ell_2=3$. Comme la suite est décroissante, on doit avoir $\ell \leq a_1=\frac{5}{2}$, la limite est donc $\ell=\ell_1=2$.

9