EPFL – Automne 2024	D. Strütt
Analyse I – SV	Exercices
Série 8	7 novembre 2024

Remarque

Certains exercices consistent en des questions de type Vrai ou Faux (V/F). Pour chaque question, répondre VRAI si l'affirmation est toujours vraie ou par FAUX si elle n'est pas toujours vraie.

Exercice 1.

Objectif: À quoi ça sert les maths?

Cet exercice est adapté d'un exercice dans *Mathematics for the Life Sciences* par Bodine, Lenhart, Gross, Princeton University Press, 2014.

Supposons qu'on ait un médicament et qu'un patient en élimine 10% chaque heure. Supposons de plus que le médicament est administré en dose de 200 mg toutes les 6 heures. Si $(x_n)_{n\geq 0}$ est la suite définie par

 $x_n = \begin{cases} \text{quantit\'e} \text{ de m\'e}dicament pr\'esent dans le corps d'un patient} \\ \text{au bout de } n \text{ heures de traitement en mg.} \end{cases}$

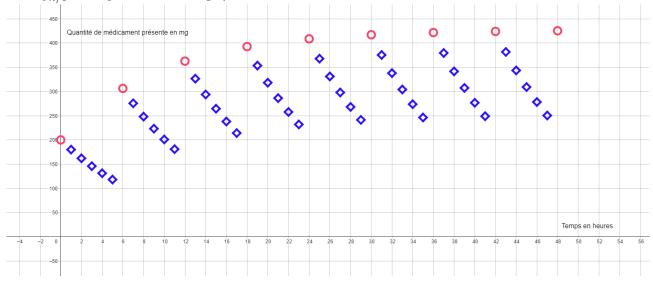
On a alors,

$$x_0 = 200$$
 $x_4 = 0.9x_3$ $x_1 = 0.9x_0$ $x_5 = 0.9x_4$ $x_2 = 0.9x_1$ $x_6 = 0.9x_5 + 200$ $x_7 = 0.9x_6$:

Pour finir, soit la sous-suite

 $y_k = x_{6k} = {
m quantit\'e}$ quantit\'e de médicament présent dans le corps d'un patient au bout de 6k heures de traitement en mg.

Ci-dessous, une illustration de la suite avec (x_n) en bleu et (y_k) en rouge. (Pour n divisible par 6, $x_n = y_{n/6}$ est représenté en rouge.)



(i) Décrire y_k comme une suite définie par récurrence (pas besoin de justifier.)

- (ii) Analyser la convergence de la suite $(y_k)_{k\geq 0}$ comme dans les exercices précédents (limites possibles, bornes, monotonie; ne pas utiliser l'exemple 3.56).
- (iii) Sachant qu'une présence de 450 mg du médicament dans le corps d'un patient présente un risque de toxicité, ce traitement est-il potentiellement dangereux sur le long terme? Utiliser votre analyse du point précédent.

Exercice 2.

Objectif: Monotonie d'une composition de fonctions

Théorie nécessaire: §4.1

Soient les fonctions $f,g:\mathbb{R}\to\mathbb{R}$. Déterminer la monotonie de leur composée $g\circ f:\mathbb{R}\to\mathbb{R}$ si

- (i) f et g sont croissantes,
- (ii) f et g sont décroissantes,
- (iii) f est croissante et g est décroissante.

Qu'en est-il de la monotonie de $f \circ g$ dans le cas (iii)?

Exercice 3.

Objectif: Propriétés qualitatives de la fonction réciproque

Théorie nécessaire: §4.1

(i) Si $f: X \to Y$ est croissante et bijective, alors $f^{-1}: Y \to X$ est

□ décroissante

 \square croissante

□ ni croissante ni décroissante

□ bornée

(ii) Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction impaire et bijective, alors f^{-1} est

 \square impaire

□ paire

☐ ni paire ni impaire

□ périodique

Exercice 4. (i) Montrer par récurrence que pour tout $n \ge 1$,

$$\sum_{k=1}^{n} \log \left(\frac{(k+1)^2}{k(k+2)} \right) = \log \left(\frac{n+1}{n+2} \right) + \log(2).$$

(ii) En déduire la valeur de la série

$$\sum_{k=1}^{\infty} \log \left(\frac{(k+1)^2}{k(k+2)} \right).$$

 $\underline{Indication}$: on pourra utiliser sans démonstration que si (x_n) est une suite telle que pour tout n, $x_n > 0$ et $\lim_{n \to \infty} x_n = l > 0$, alors $\lim_{n \to \infty} \log(x_n) = \log(l)$. On le montrera dans le Chapitre 5.

Exercice 5.

(i) Montrer que pour tout $n \in \mathbb{N}$, $n \ge 1$ et $x, y \in \mathbb{R}$,

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} y^{k} x^{n-k-1}$$

(ii) Soit $n \in \mathbb{N}$ et $f : \mathbb{R}_+ \to \mathbb{R}$ définie par $f(x) = x^n$.

Montrer que f est croissante.

(iii) Soit $n \in \mathbb{N}$ impair et $f : \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x^n$.

Montrer que f est croissante.

Suggestion: En choisissant $x, y \in \mathbb{R}$ tels que $x \leq y$ afin de montrer la croissance de f, distinguer les cas $0 \leq x \leq y$, $x \leq 0 \leq y$ et $x \leq y \leq 0$. Pour le dernier cas, utiliser que f est impaire et le résultat du point (ii).

(iv) Soit $n \in \mathbb{N}$ pair et $f: \mathbb{R}_- \to \mathbb{R}$ définie par $f(x) = x^n$.

Montrer que f est décroissante.

Suggestion: utilisez le fait que x^n est paire.

Exercice 6.

Vrai ou faux?

Q1 : Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction périodique. La plus petite période de f est toujours définie, c'est-à-dire qu'il existe un plus petit T > 0 tel que $f(x + T) = f(x) \ \forall x \in \mathbb{R}$.

Q2: Si f est périodique, alors |f| est aussi périodique.

Q3 : Si |f| est périodique, alors f est aussi périodique.

Q4 : Si f et |f| ont une plus petite période, celles-ci sont égales.

Exercice 7.

Donner le domaine de définition et étudier la parité et la périodicité des fonctions f suivantes, en donnant la plus petite période si possible :

(i)
$$f(x) = \frac{x^4 \cos(3x)}{1 + \sin^2(x)}$$

(ii)
$$f(x) = 2\sin\left(\frac{1}{2}x\right)\cos\left(\frac{1}{3}x\right)$$

(iii)
$$f(x) = \tan(3x) + \cos(\pi x)$$

(iv) $f(x)=(x-\lfloor x\rfloor)^2$, où $\lfloor x\rfloor$ est la partie entière inférieure de $x\in\mathbb{R}$. Par exemple $\lfloor \pi\rfloor=3$, $|2.9|=2,\,|-1.5|=-2$.

Exercice 8.

Objectif: Manipulation théorique de fonctions paires/impaires

Théorie nécessaire: §4.1

Montrer la proposition 4.6 du cours.

Proposition 4.6

Soient $D \subset \mathbb{R}$ un ensemble symétrique, $p_1, p_2 \colon D \to \mathbb{R}$ deux fonctions paires, $q_1, q_2 \colon D \to \mathbb{R}$ deux fonctions impaires et $f \colon p_1(D) \to \mathbb{R}$ une fonction. Alors,

- (i) $p_1 + p_2$ est paire.
- (ii) p_1p_2 est paire.

(iii) $q_1 + q_2$ est impaire.

(iv) q_1q_2 est paire.

(v) p_1q_1 est impaire.

(vi) si $q_2(D) \subset D$, $q_1 \circ q_2$ est impaire.

(vii) si $q_1(D) \subset D$, $p_1 \circ q_1$ est paire.

(viii) $f \circ p_1$ est paire.

Exercice 9.

Soient $f, g: \mathbb{R} \to \mathbb{R}$ deux fonctions.

Vrai ou faux?

Q1: Si f est strictement monotone, alors f est injective.

Q2: Si f est injective, alors f est monotone.

Q3 : Si f est bijective et croissante, alors sa fonction réciproque f^{-1} est décroissante.

Q4 : Si $f \circ g$ est décroissante, alors f et g sont décroissantes.

Exercice 10.

Trouver les valeurs de $\alpha, \beta \in \mathbb{R}$ pour les quelles les limites suivantes existent dans \mathbb{R} :

(i)
$$\lim_{x \to \alpha} \frac{\tan(x-\alpha)^2}{(x-\alpha)^2}$$
;

(ii)
$$\lim_{x \to \alpha} \frac{x^4 - 2\alpha x^3 + 4x^2}{(x - \alpha)^2}$$

(ii)
$$\lim_{x \to \alpha} \frac{x^4 - 2\alpha x^3 + 4x^2}{(x - \alpha)^2};$$
 (iii)
$$\lim_{x \to 0} \frac{x^2 \sin\left(\frac{1}{x}\right) + \alpha|x|}{\sqrt{x^2 + \beta \left|\cos\left(\frac{1}{x}\right)\right|}}.$$

<u>Indication</u>: pour le (iii), étudier séparemment les cas $\beta = 0, \beta < 0, \beta > 0$.

Exercice 11.

Objectif: Travailler avec la définition de limite de fonction

Montrer à l'aide de la définition de la limite que

$$\lim_{x \to 1} (2x + 8) = 10.$$

Solution des exercices calculatoires et auto-évaluation

Exercice $4 (ii) \log(2)$