Remarque

Certains exercices consistent en des questions de type Vrai ou Faux (V/F). Pour chaque question, répondre VRAI si l'affirmation est toujours vraie ou par FAUX si elle n'est pas toujours vraie.

Exercice 1.

Objectif: Calculer la valeur de séries à partir de séries connues

Théorie nécessaire: Exemple 3.42

Calculer la valeur des séries suivantes

$$(i) -\sum_{k=1}^{\infty} \left(-\frac{1}{2}\right)^k \qquad \qquad (ii) \sum_{k=2}^{\infty} \left(-\frac{1}{3}\right)^k$$

Exercice 2.

Soit $(a_n)_{n\geq 1}$ une suite numérique. Vrai ou faux ?

Q1: Si
$$\sum_{n=1}^{\infty} (-1)^n a_n$$
 converge, alors $\lim_{n \to \infty} a_n = 0$.

Q2: Si
$$\lim_{n\to\infty} a_n = 0$$
, alors $\sum_{n=1}^{\infty} a_n$ converge.

Q3: Si
$$\sum_{n=1}^{\infty} a_n$$
 converge absolument, alors $\sum_{n=1}^{\infty} (-1)^n a_n$ converge.

Q4: Si
$$(a_n)_{n\geq 1}$$
 est strictement décroissante, alors $\sum_{n=1}^{\infty} (-1)^n a_n$ converge.

Q5: Si
$$\sum_{n=1}^{\infty} a_n$$
 converge, alors $\sum_{n=1}^{\infty} a_n^2$ converge.

Q6: Si
$$\sum_{n=1}^{\infty} a_n$$
 converge absolument, alors $\sum_{n=1}^{\infty} a_n^2$ converge.

Q7: La série
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$
 converge.

Exercice 3.

Objectif: Déterminer la convergence de séries à l'aide de critères de convergence

Théorie nécessaire: §3.6

Déterminer si la série donnée converge ou diverge :

$$(i) \sum_{n=1}^{\infty} \left(\frac{3n+2}{4n+5}\right)^n$$

$$(iv) \sum_{n=1}^{\infty} \left(\sqrt{n^2 + 7} - n \right)$$

$$(iv) \sum_{n=1}^{\infty} \left(\sqrt{n^2 + 7} - n \right) \qquad (vii) \sum_{n=1}^{\infty} \frac{\sqrt{n+4} - \sqrt{n}}{n}$$

(ii)
$$\sum_{n=1}^{\infty} \frac{n^4}{3^n}$$

$$(v) \sum_{n=1}^{\infty} 1 - \cos\left(\frac{\pi}{n+1}\right) \qquad (viii) \sum_{n=0}^{\infty} \frac{(n!)^d}{(dn)!}$$

(viii)
$$\sum_{n=0}^{\infty} \frac{(n!)^d}{(dn)!}$$

(iii)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{3n-2}$$

(vi)
$$\sum_{n=1}^{\infty} \frac{n(n+4)(n-3)}{7n^3 + n + 2}$$

$\underline{Indication}:$

- Pour la série (v), cette égalité peut vous aider : $1 \cos(x) = 2\sin\left(\frac{x}{2}\right)^2$, for $x \in \mathbb{R}$.
- Pour la série (viii), considerez les cas d = 1, 2, 3.

Exercice 4.

À l'aide du critère de d'Alembert, déterminer, parmi les séries suivantes, lesquelles convergent

$$\sum_{k=1}^{\infty} \frac{k^k}{k!} \qquad \qquad \sum_{k=1}^{\infty} \frac{k!}{k^k}$$

Exercice 5.

Objectif: Convergence de séries qui dépendent d'un paramètre

Théorie nécessaire: §3.6, exemple 3.53

Étudier la convergence des séries suivantes en fonction de la valeur du paramètre $c \in \mathbb{R}$.

(i)
$$\sum_{n=1}^{\infty} \left(\frac{c}{1-c}\right)^n$$
, (avec $c \neq 1$)

$$(iii) \sum_{n=1}^{\infty} \left(\sin\left(\frac{\pi c}{2}\right) \right)^n$$

(ii)
$$\sum_{n=1}^{\infty} n \cdot c^n$$

(iv)
$$\sum_{n=1}^{\infty} \frac{c^n n!}{n^n}$$

Quelles sont les valeurs des séries (i) et (iii) lorsqu'elles convergent?

Exercice 6.

Objectif: Suites définies par récurrence monotones

Théorie nécessaire: Exemple 3.57 (i)

Montrer que les suites suivantes sont convergentes en montrant qu'elles sont monotones et bornées et trouver leur limite.

On propose de procéder de la façon suivante :

- Étape 1: Calculer quelques termes. Deviner si la suite sera croissante ou décroissante.
- Étape 2 : Trouver la limite l en résolvant l = f(l) et en utilisant que $l \ge x_0$ si (x_n) est croissante ou que $l \le x_0$ si (x_n) est décroissante.
- Étape 3 : Montrer par récurrence que $x_0 \le x_n \le l$ ou $l \le x_n \le x_0$.
- Étape 4 : Montrer que (x_n) est monotone.

(i)
$$x_0 = 1$$
, $x_{n+1} = f(x_n) = \sqrt{2 + x_n}$.

(ii)
$$x_0 = \frac{3}{2}$$
, $x_{n+1} = f(x_n) = 1 + \frac{1}{2}x_n^2 - \frac{1}{2}x_n$.

(iii)
$$x_0 = \frac{3}{2}$$
, $x_{n+1} = f(x_n) = 3 - \frac{1}{x_n}$.

Exercice 7.

Montrer que les suites définies par récurrence suivantes convergent et trouver leur limite.

(i)
$$x_0 = 3$$
, $x_{n+1} = -\frac{2}{3}x_n + 1$.

(ii)
$$x_0 = \frac{5}{2}$$
, $x_{n+1} = \frac{x_n^2 + 6}{5}$.

(iii)
$$x_0 = -3$$
, $x_{n+1} = 2x_n + 3$.

Objectif: Développer les bons réflexes dans le cas d'exercices qui peuvent être impressionnants

Soit $f: \mathbb{R} \setminus \{1\} \to \mathbb{R}$ définie par

$$f(x) = \frac{-5x^2 + 14x}{4(x-1)}$$

et la suite $(x_n)_{n\geq 1}$ définie par récurrence

$$\begin{cases} x_0 = -2 \\ x_{n+1} = f(x_n) & \forall n \ge 0 \end{cases}$$

Alors:

- \Box (x_n) converge et $\lim_{n\to\infty} x_n = 0$.
- \Box (x_n) converge et $\lim_{n\to\infty} x_n = 2$.
- \square (x_n) diverge, $\limsup_{n\to\infty} x_n = 4$ et $\liminf_{n\to\infty} x_n = -2$.
- \square (x_n) diverge, $\limsup_{n\to\infty} x_n = 2$ et $\liminf_{n\to\infty} x_n = 0$.

Exercice 9.

Soit $f: \mathbb{R} \to \mathbb{R}$ définie par

$$f(x) = \frac{3x}{2} + \frac{\pi}{2}\cos(x) - \frac{3\pi}{4}\sin(x).$$

(i) Soit $(x_n)_{n\geq 0}$, la suite définie par récurrence par

$$\begin{cases} x_0 = 0 \\ x_{n+1} = f(x_n) & n \ge 0. \end{cases}$$

Alors,

- \Box (x_n) converge et $\lim_{n\to\infty} x_n = \frac{\pi}{2}$.
- \Box (x_n) converge et $\lim_{n\to\infty} x_n = \overline{\pi}$.
- \Box (x_n) diverge, $\liminf_{n\to\infty} x_n = 0$ et $\limsup_{n\to\infty} x_n = \pi$.
- \Box (x_n) diverge, $\liminf_{n\to\infty} x_n = 0$ et $\limsup_{n\to\infty} x_n = \frac{\pi}{2}$.

(ii) Soit $(x_n)_{n\geq 0}$, la suite définie par récurrence par

$$\begin{cases} x_0 = \pi \\ x_{n+1} = f(x_n) & n \ge 0. \end{cases}$$

Alors,

- \Box (x_n) converge et $\lim_{n\to\infty} x_n = \frac{\pi}{2}$.
- \Box (x_n) converge et $\lim_{n\to\infty} x_n = \pi$.
- \Box (x_n) diverge, $\liminf_{n\to\infty} x_n = 0$ et $\limsup_{n\to\infty} x_n = \pi$.
- \Box (x_n) diverge, $\liminf_{n\to\infty} x_n = 0$ et $\limsup_{n\to\infty} x_n = \frac{\pi}{2}$.

Exercice 10 (Facultatif).

Le but de cet exercice est de montrer que la série harmonique diverge, c-à-d

$$\sum_{k=1}^{\infty} \frac{1}{k} = +\infty.$$

On propose de procéder de la façon suivante. Soit

$$S_n = \sum_{k=1}^n \frac{1}{k}.$$

Considérer la sous suite $(S_{n_j})_{j\geq 1}\subset (S_n)$ donnée par $n_j=2^j.$

(a) Montrer par récurrence que pour tout $j \ge 1$,

$$S_{n_j} = 1 + \sum_{m=1}^{j} \sum_{k=2^{m-1}+1}^{2^m} \frac{1}{k}$$

(b) En utilisant que, pour tout $k \in \mathbb{N}$ tel que $2^{m-1}+1 \le k \le 2^m$, on a $\frac{1}{k} \ge \frac{1}{2^m}$, montrer que

$$S_{n_j} \ge 1 + \frac{j}{2}.$$

(c) En déduire que $\lim_{j\to\infty}S_{n_j}=+\infty$ et donc (S_n) diverge.

Solution des exercices calculatoires et auto-évaluation

Exercice 1 (i)
$$\frac{1}{3}$$

$$(ii)$$
 $\frac{1}{12}$

Exercice 5 (i)
$$\frac{c}{1-2c}$$

Exercice 1 (i)
$$\frac{1}{3}$$

(ii) $\frac{1}{12}$
Exercice 5 (i) $\frac{c}{1-2c}$
(iii) $\frac{\sin(\pi c/2)}{1-\sin(\pi c/2)}$

Exercice 8 Avez-vous écrit quelques termes de la suite?

Exercice 9 Avez-vous écrit quelques termes de la suite?