EPFL – Automne 2024	D. Strütt
Analyse I – SV	Exercices
Série 4	3 octobre 2024

Remarque

Certains exercices consistent en des questions de type Vrai ou Faux (V/F). Pour chaque question, répondre VRAI si l'affirmation est toujours vraie ou par FAUX si elle n'est pas toujours vraie.

Exercice 1.

Objectif: Être capable de donner l'infimum et le supremum d'un intervalle et d'une union d'intervalles. Distinguer quand le supremum est un maximum ou l'infimum est un minimum Il Théorie nécessaire: Exemple 1.19

Donner l'infimum et le supremum des sous-ensembles de \mathbb{R} ci-dessous et préciser s'il s'agit d'un minimum ou d'un maximum (pas besoin de faire la demonstration).

$$(i) \ A =]-1, \sqrt{2} \,] \qquad (ii) \ B =]\sqrt{3}, \infty \,[\qquad (iii) \ C = \{x \in \mathbb{R} : |2x-1| \le 1\}$$

Exercice 2.

Objectif: Utiliser les notions de partie réelle, imaginaire et conjugué correctement **□ Théorie nécessaire:** Cours 2.1-2.2

Montrer que $\forall z \in \mathbb{C}$

$$\operatorname{Re}(z) = \frac{z + \bar{z}}{2}$$
 et $\operatorname{Im}(z) = \frac{z - \bar{z}}{2i}$.

Exercice 3.

Objectif: Réécrire des ensembles sous-forme d'intervalle

Réccrire les sous-ensembles suivants en utilisant la notation des intervalles :

1.
$$A = \{x \in \mathbb{R} \mid x < 1\}$$

4.
$$D = \{x \in \mathbb{R} \mid x^2 < 2\}$$

2.
$$B = \{x \in \mathbb{R} \mid x < 1\}$$

5.
$$E = \{x \in \mathbb{R} \mid x^2 > 2\}$$

3.
$$C = \{x \in \mathbb{R} \mid -x < 1\}$$

6.
$$F = \{x \in \mathbb{R} \mid -x^3 > 3\}$$

Exercice 4.

Exprimer chacun des sous-ensembles de \mathbb{R} ci-dessous en termes de réunions ou d'intersections d'intervalles (ouverts, fermés ou non).

1.
$$A = \{x \in \mathbb{R} : |x| < 1000\}$$

4.
$$D = \{x \in \mathbb{R} : x \neq 33\}$$

2.
$$B = \{x \in \mathbb{R} : x^2 \ge 100\}$$

3. $C = \{x \in \mathbb{R} : x^3 = 27\}$

5.
$$E = \{x \in \mathbb{R} : |x^2 - 2| < 1\}$$

Exercice 5.

Objectif: Écrire des démonstrations pour justifier le supremum, infimum

Théorie nécessaire: Exemple 1.12

Soit $b \in \mathbb{R}$.

- (i) Montrer que $I =]-\infty, b[$ n'est pas minoré et sup I = b.
- (ii) Montrer que $I = [b, +\infty[$ n'est pas majoré et inf I = b.

Exercice 6.

Objectif: Tester des possibles fausses idées qui peuvent apparaître avec le suprémum et l'infimum

Soit $A \subset \mathbb{R}$ un **intervalle** borné non vide.

Vrai ou faux?

- Q1 : Il suit que sup $A \in A$ et inf $A \in A$.
- Q2 : Si sup $A \in A$ et inf $A \in A$, alors A est fermé.
- Q3 : Si A est fermé, alors $\sup A \in A$ et $\inf A \in A$.
- Q4: Si $\sup A \notin A$ et $\inf A \notin A$, alors A est ouvert.
- Q5 : Si A est ouvert, alors inf $A \not\in A$ et sup $A \not\in A$.

Exercice 7.

Objectif: Résoudre des équations en particulier avec des valeurs absolues

Résoudre les inéquations suivantes :

(i)
$$x^2 - 2x - 2 < 0$$
 pour $x \in \mathbb{R}$

(iii)
$$\frac{1}{1-|x|} < 1$$
 pour $x \in \mathbb{R} \setminus \{\pm 1\}$

$$(ii) |x-2| \le |x+3| \quad \text{pour } x \in \mathbb{R}$$

(iv)
$$\frac{x}{|x|-2} + \frac{|x|}{x+1} \ge 0$$
 pour $x \in \mathbb{R} \setminus \{\pm 2, -1\}$

c'est-à-dire spécifier (en termes d'unions d'intervalles) les ensembles $A \subset \mathbb{R}$ tels que les inéquations sont satisfaites pour tout $x \in A$ et pas satisfaites pour $x \notin A$.

<u>Indication</u>: il est parfois utile de considérer plusieurs cas séparément.

Exercice 8.

Objectif: Résoudre des équations en particulier avec des valeurs absolues

Le plus grand sous-ensemble $A \subset \mathbb{R}$ tel que pour tout $x \in A$

$$||x-1|-1| \le ||x|-1|$$

est

Exercice 9.

Objectif: Simplifier des expressions complexes

Trouver la partie réelle et la partie imaginaire des nombres complexes suivants :

$$(i) (2-3i)(3+2i)$$

(iii)
$$\frac{1}{1+i} + \frac{1}{1+2i} + \frac{1}{1+3i}$$
 (v) $\left(\frac{10-15i}{2+i}\right) \left(\frac{1+i}{1-3i}\right)$

$$(v)$$
 $\left(\frac{10-15i}{2+i}\right)\left(\frac{1+i}{1-3i}\right)$

$$(ii) \ \frac{2-3i}{4-5i}$$

$$(iv) \frac{2-3i}{2+i} + \frac{1-i}{1+3i}$$

Exercice 10.

Objectif: Trouver l'argument et le module de nombres complexes en vue de les écrire sous forme polaire

Théorie nécessaire: Exemple 2.8

Trouver le module et l'argument des nombres complexes suivants :

$$(i) -2$$

$$(iii)$$
 $-1+i\sqrt{3}$

$$(v) \frac{8i^{21}-2i^{11}}{1-i}$$

$$(ii) 2 + 2i$$

$$(iv) -1 + i \tan(3)$$

Exercice 11.

Objectif: Utiliser les formules d'Euler pour redémontrer des identités trigonométriques

Théorie nécessaire: Cours 2.15-2.16

Dans la série 1, on avait rappelé les formules suivantes :

$$\sin^2(x) + \cos^2(x) = 1$$

$$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$$

$$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$$

$$2\cos\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right) = \sin(x) - \sin(y)$$

Montrer ces formules à l'aide des formules d'Euler.

Exercice 12.

Objectif: Repérer des erreurs de grammaire mathématique.

Soit $f: \mathbb{R}_+^* \to \mathbb{R}$ définie par $f(x) = \frac{1}{x^2}$. On a alors que la propriété

$$\forall \varepsilon > 0, \ \exists M > 0 \ \text{tel que} \ \forall x \geq M, \ |f(x)| \leq \varepsilon.$$

est vraie.

Ci-dessous, deux démonstration du résultat. Dans l'une d'elles, nous avons glissé deux erreurs. Laquelle de ces deux démonstrations est correcte et où sont les problèmes?

Remarque.

la propriété ci-dessus sera étudiée dans le chapitre 4, c'est-à-dire, vous n'êtes pas sensé · e comprendre ce que la propriété veut dire. Les problèmes dans la démonstration ne sont pas dûs à ce que la démonstration raconte, mais plutôt, dans la grammaire employée dans la démonstration.

 $\begin{array}{ll} \textit{D\'{e}monstration.} \text{ On doit montrer qu'on peut} \\ \text{trouver } M \geq 0 \text{ tel que dès que } x \geq M, \\ |f(x)| = \frac{1}{x^2} \leq \varepsilon, \text{ quelque soit } \varepsilon > 0. \\ \text{Posons } M := \frac{1}{\sqrt{\varepsilon}} > 0 \text{ et consid\'{e}rons } x \geq M \\ \text{quelconque. Alors,} \end{array}$

$$|f(x)| = \frac{1}{x^2} \stackrel{x \ge M}{\le} \frac{1}{M^2} \stackrel{M=1/\sqrt{\varepsilon}}{=} \frac{1}{\left(\frac{1}{\sqrt{\varepsilon}}\right)^2} = \varepsilon.$$

 ε étant quel
conque, on a le résultat voulu. \qed

 $\begin{array}{ll} \textit{D\'{e}monstration.} \text{ On } & \text{doit } \text{ montrer } \text{ que} \\ \text{quelque soit } \varepsilon > 0, \text{ on peut trouver } M \geq 0 \\ \text{tel que d\`{e}s que } x \geq M, |f(x)| = \frac{1}{x^2} \leq \varepsilon. \\ \text{Soit } \varepsilon > 0 \text{ quelconque. Posons } M := \frac{1}{\sqrt{\varepsilon}} > 0 \\ \text{et consid\'{e}rons } x \geq M \text{ quelconque. Alors,} \end{array}$

$$|f(x)| = \frac{1}{x^2} \stackrel{x \ge M}{\le} \frac{1}{M^2} \stackrel{M = 1/\sqrt{\varepsilon}}{=} \frac{1}{\left(\frac{1}{\sqrt{\varepsilon}}\right)^2} = \varepsilon,$$

 ε étant quel
conque, on a le résultat voulu. $\ \square$

Solution des exercices calculatoires et auto-évaluation

Exercice 9 Si z = a + ib avec a = Re(z) et b = Im(z),

(i)
$$12 - 5i$$

$$\begin{array}{c} (i) \ 12-5i \\ (ii) \ \frac{23}{41}-i\frac{2}{41} \\ (iii) \ 4/5-6/5i \end{array}$$

(iii)
$$4/5 - 6/5i$$

$$(iv) \ 0 - 2i$$

$$(v) 3 + 2i$$

Exercice 10 Si $z = \rho e^{i\phi}$ avec $\rho = |z|$ et $\phi = \arg(z)$,

(i)
$$2e^{i\pi}$$

$$(ii) \ 2\sqrt{2}e^{i\frac{\pi}{4}}$$

$$(iii)$$
 $2e^{i\frac{2\pi}{3}}$

$$(iv) \frac{1}{|\cos(3)|}e^{-3i}$$

$$(v) 5\sqrt{2}e^{i\frac{3\pi}{4}}$$