EPFL – Automne 2024	D. Strütt
Analyse I – SV	Exercices
Série 1	12 septembre 2024

Avant-propos.

La plupart des exercices suivants sont tirés du livre Analyse : Concepts et Contextes, Volume 1 : Fonctions d'une variable de James Stewart, édition De Boeck. Ils ont été revisités et mis en forme par Peter Wittwer, enseignant à l'EPFL.

Le but est de repérer les faiblesses que vous pourriez avoir. Si vous avez des difficultés pour résoudre ces exercices, il est vivement conseillé de rattraper le matériel en question.

Partie I: Algèbre.

Pour réviser cette partie (si nécessaire), voir le fichier http://www.stewartcalculus.com/data/ default/upfiles/AlgebraReview.pdf.

 $1. \ \, {\rm Calculer, \, sans \, \, calculatrice, \, chacune \, \, des \, \, expressions \, \, suivantes.}$

a)
$$(-3)^4$$
 b) -3^4 c) 3^{-4} d) $\frac{5^{23}}{5^{21}}$ e) $\left(\frac{2}{3}\right)^{-2}$ f) $16^{-3/4}$

2. Simplifier chaque expression. Ecrire la réponse sans exposants négatifs.

a)
$$\sqrt{200} - \sqrt{32}$$
 b) $(3a^3b^3)(4ab^2)^2$ c) $\left(\frac{3x^{3/2}y^3}{x^2y^{-1/2}}\right)^{-2}$

3. Développer et simplifier.

a)
$$3(x+6) + 4(2x-5)$$
 b) $(x+3)(4x-5)$ c) $(\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b})$
d) $(2x+3)^2$ e) $(x+2)^3$ f) $(a^{4/3} - a^{2/3} + 1)(a^{2/3} + 1)$

4. Factoriser chaque expression.

a)
$$4x^2 - 25$$
 b) $2x^2 + 5x - 12$ c) $x^3 - 3x^2 - 4x + 12$
d) $x^2 + 27x$ e) $3x^{3/2} - 9x^{1/2} + 6x^{-1/2}$ f) $x^3y - 4xy$

5. Simplifier l'expression rationnelle.

a)
$$\frac{x^2 + 3x + 2}{x^2 - x - 2}$$
 b) $\frac{2x^2 - x - 1}{x^2 - 9} \cdot \frac{x + 3}{2x + 1}$ c) $\frac{x^2}{x^2 - 4} - \frac{x + 1}{x + 2}$ d) $\frac{\frac{y}{x} - \frac{x}{y}}{\frac{1}{y} - \frac{1}{x}}$

6. Rendre le dénominateur rationnel et simplifier.

a)
$$\frac{\sqrt{10}}{\sqrt{5}-2}$$
 b) $\frac{h}{\sqrt{9+h}+3}$

7. Simplifier les expressions, où a, b > 0 et $p, q \in \mathbb{R}^*$.

Simplifier les expressions, ou
$$a, b > 0$$
 et $p, q \in \mathbb{R}^{+}$.

a) $(ab)^{p}b^{q-p}$ b) $a^{p-q}(ab)^{q}$ c) $\frac{a^{p}}{b^{-q}}$ d) $\frac{b^{q}}{a^{-p}}$

e) $\left(ab^{\frac{q}{p}}\right)^{p}$ f) $\left(a^{\frac{p}{q}}b\right)^{q}$ g) $\left(a^{\frac{1}{q}}b^{\frac{1}{p}}\right)^{pq}$ h) $\sqrt{a^{2p}}b^{q}$

j) $\left(\left(\frac{1}{a}\right)^{q} + \left(\frac{1}{b}\right)^{p}\right)\frac{a^{p}(ab)^{q}}{1 + \frac{a^{q}}{b^{p}}}$ k) $a^{q}b^{p}\frac{\frac{a^{p}+b^{q}}{\left(\frac{1}{a}\right)^{p}+\left(\frac{1}{b}\right)^{q}}{\left(\frac{1}{b}\right)^{p}+\left(\frac{1}{a}\right)^{q}}$ l) $a^{p-q}b^{q-p}\left(a^{q}+b^{p}\right)\left(\left(\frac{1}{a}\right)^{q}+\left(\frac{1}{b}\right)^{p}\right)^{-1}$

m) $a^{q}b^{p}\left(\left(a^{\frac{1}{q}-\frac{1}{p}}b^{\frac{1}{p}-\frac{1}{q}}\right)^{p}\right)^{q}$ n) $\left(\sqrt{a^{p}(b^{q}+a^{-p})}-1\right)\left(\sqrt{b^{q}(a^{p}+b^{-q})}+1\right)$

8. Compléter le carré, c'est-à-dire écrire les expressions suivantes sous la forme $a(x+b)^2 + c$.

a)
$$x^2 + x + 1$$
 b) $2x^2 - 12x + 11$

- 9. Résoudre l'équation. (Chercher seulement les solutions réelles.)

 - a) $x+5=14-\frac{1}{2}x$ b) $\frac{2x}{x+1}=\frac{2x-1}{x}$
- c) $x^2 x 12 = 0$ c) $x^2 - x - 12 =$ f) 3|x - 4| = 10

- d) $2x^2 + 4x + 1 = 0$
- $e) \quad x^4 3x^2 + 2 = 0$

- g) $2x(4-x)^{-1/2} 3\sqrt{4-x} = 0$
- 10. Résoudre chaque inégalité. Écrire les réponses sous forme d'intervalles.
 - a) $-4 < 5 3x \le 17$
- b) $x^2 < 2x + 8$
- c) x(x-1)(x+2) > 0

- |x-4| < 3
- $e) \quad \frac{2x-3}{x+1} \le 1$
- 11. Ces équations sont-elles vraies ou fausses? Pour chaque équation, le domaine des variables est supposé tel que tout soit bien défini.
 - a) $(p+q)^2 = p^2 + q^2$
- b) $\sqrt{ab} = \sqrt{a}\sqrt{b}$

- a) (p+q) p + qd) $\frac{1+TC}{C} = 1+T$ e) $(bc+1)\frac{a}{b} = \frac{(bc+1)ad}{bd}$ f) $\frac{1}{x-y} = \frac{1}{x} \frac{1}{y}$

- $g) \quad \frac{\frac{1}{x}}{\frac{a}{a} \frac{b}{a}} = \frac{1}{a b}$
- h) $\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$
- 12. Vérifier les identités.
 - a) $3^{2(n+1)+4} 2^{n+1} = 9(3^{2n+4} 2^n) + 7 \cdot 2^n$, où $n \in \mathbb{N}$
 - b) $\left(\sum_{k=0}^{7} a^k\right) (1-a) = (1-a)(1+a)(1+a^2)(1+a^4)$
- 13. Soient b>0 et $m\in\mathbb{Z}$. Simplifier l'expression $A=\left(-b(-b^{-2})^m\right)^{-2m}$. Déterminer m pour que A soit égal à 16^5 lorsque b=2.

Partie II: Trigonométrie.

Rappel: voici quelques identités trigonométriques remarquables:

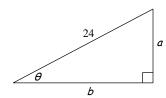
- $\sin^2(x) + \cos^2(x) = 1$
- $\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$
- cos(x+y) = cos(x)cos(y) sin(x)sin(y)
- $2\cos\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right) = \sin(x) \sin(y)$
- $\tan(x) = \frac{\sin(x)}{\cos(x)}$

On montrera ces identités dans le Chapitre 2.

Si vous avez des difficultés avec cette partie, consultez l'annexe C du livre de Stewart.

- 1. Convertir de degrés en radians.
 - a) 300°
- b) -18°
- 2. Convertir de radians en degrés.
- 3. Calculer la longueur de l'arc d'un cercle de 12 cm de rayon sous-tendu par un angle au centre de 30° .
- 4. Quelles sont les valeurs exactes?
 - a) $\sin\left(\frac{7\pi}{6}\right)$
- $b) \quad \cos\left(\frac{7\pi}{4}\right)$
- c) $\tan(\frac{\pi}{3})$

5. Exprimer les longueurs a et b de la figure ci-dessous en termes de θ .

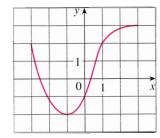


- 6. Calculer $\sin(x+y)$ sachant que $\sin(x) = \frac{1}{3}$, $\cos(y) = \frac{4}{5}$ et que x et y sont compris entre 0 et
- 7. Démontrer ces identités en supposant que tout soit bien défini
 - a) $\tan(\theta)\sin(\theta) + \cos(\theta) = \frac{1}{\cos(\theta)}$
- $b) \quad \frac{2\tan(x)}{1+\tan(x)^2} = \sin(2x)$
- 8. Chercher toutes les valeurs de x comprises entre 0 et 2π telles que $\sin(2x) = \sin(x)$.
- 9. Dessiner le graphe de la fonction $y = 1 + \sin(2x)$ sans faire usage de la calculatrice.

Partie III: Fonctions réelles.

Si vous avez des difficultés avec cette partie, consultez les sections 1.1 à 1.3 du livre de Stewart.

1. La figure ci-dessous montre le graphe d'une fonction f.



- a) Quelle est la valeur f(-1)?
- b) Que vaut f(2)?
- c) Pour quelles valeurs de x a-t-on f(x) = 2?
- d) Chercher les valeurs de x pour lesquelles f(x) = 0.
- e) Déterminer le domaine de définition et l'ensemble image de f.
- 2. Pour $f(x) = x^3$, calculer le quotient différentiel $\frac{f(2+h) f(2)}{h}$ et le simplifier.
- 3. Déterminer le domaine de définition de la fonction.

a)
$$f(x) = \frac{2x+1}{x^2+x-2}$$

$$b) \quad g(x) = \frac{x^{1/3}}{x^2 + 1}$$

a)
$$f(x) = \frac{2x+1}{x^2+x-2}$$
 b) $g(x) = \frac{x^{1/3}}{x^2+1}$ c) $h(x) = \sqrt{4-x} + \sqrt{x^2-1}$

- 4. Par quelles transformations du graphe de f obtient-on les graphes des fonctions suivantes?
 - $a) \quad y = -f(x)$
- b) y = 2f(x) 1 c) y = f(x 3) + 2
- 5. Esquisser à la main et sans l'aide d'une calculatrice les graphes suivants.
- a) $y = x^3$ b) $y = (x+1)^3$ c) $y = (x-2)^3 + 3$ d) $y = 4 x^2$ e) $y = \sqrt{x}$ f) $y = 2\sqrt{x}$ g) $y = -2^x$ h) $y = 1 + x^{-1}$

- 6. Soit $f(x) = \begin{cases} 1 x^2, & \text{si } x \le 0 \\ 2x + 1, & \text{si } x > 0 \end{cases}$.
 - a) Calculer f(-2) et f(1)
- b) Dessiner le graphe de f.
- 7. Soient $f(x) = x^2 + 2x 1$ et g(x) = 2x 3. Déterminer les fonctions suivantes.

 - a) $f \circ g$ b) $g \circ f$ c) $g \circ g \circ g$

8. Soit a, b > 0 et $p, q \in \mathbb{R}$. Simplifier les expressions suivantes.

$$a) \exp(p\log(a) + q\log(b))$$

b)
$$\exp(p(\log(a) - \log(b)) + \log(b)(p+q))$$

c)
$$\exp(p\log(ab^{-1}) + \log(b^{p+q}))$$

d)
$$\exp\left(q\log\left(\frac{b}{a}\right) + \log(a^q) + p\log(a)\right)$$

9. Pour chaque fonction f définie sur l'intervalle I, trouver le domaine de définition de la fonction réciproque f^{-1} et dessiner les graphes de f et f^{-1} .

 $\underline{N.B.}$: Tous les domaines I sont choisis en sorte que la fonction réciproque existe.

a)
$$f(x) = \sin(x)$$
 sur $I = \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$

b)
$$f(x) = \cos(x)$$
 sur $I = [0, \pi]$

a)
$$f(x) = \sin(x)$$
 sur $I = \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ b) $f(x) = \cos(x)$ sur $I = [0, \pi]$ c) $f(x) = \tan(x)$ sur $I = \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ d) $f(x) = e^x$ sur $I = \mathbb{R}$

d)
$$f(x) = e^x$$
 sur $I = \mathbb{R}$

$$e)$$
 $f(x) = e^{-x}$ $\sup I = \mathbb{R}$

$$f(x) = a^x$$
 avec $a = \frac{1}{2}$ sur $I = \mathbb{R}$

Rappel: La fonction réciproque d'une fonction bijective $f: X \to Y$ fait correspondre à tout élément y de Y l'unique élément x de X qui est solution de l'équation f(x) = y. On a donc $f^{-1}(y) = x.$