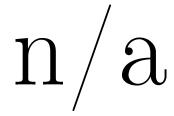


Analyse I - (n/a) 15 janvier 2024 3h30



SCIPER: 999999

Attendez le début de l'épreuve avant de tourner la page. Ce document est imprimé recto-verso, il contient 16 pages, les dernières pouvant être vides. Ne pas dégrafer.

- Posez votre carte d'étudiant sur la table.
- Aucun document n'est autorisé.
- L'utilisation d'une **calculatrice** et de tout outil électronique est interdite pendant l'épreuve.
- Pour les questions à choix multiple, on comptera:
 - +3 points si la réponse est correcte,
 - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
 - -1 point si la réponse est incorrecte.
- Pour les questions de type vrai-faux, on comptera:
 - +1 point si la réponse est correcte,
 - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
 - -1 point si la réponse est incorrecte.
- Utilisez un **stylo** à encre **noire ou bleu foncé** et effacez proprement avec du **correcteur blanc** si nécessaire.
- Si une question est erronée, l'enseignant se réserve le droit de l'annuler.

Respectez les consignes suivantes Read these guidelines Beachten Sie bitte die unten stehenden Richtlinien											
choisir une répo Antwo	ne PAS choisir une réponse NOT select an answer NICHT Antwort auswählen						Corriger une réponse Correct an answer Antwort korrigieren				
X	\checkmark										
ce qu'il ne faut <u>PAS</u> faire what should <u>NOT</u> be done was man <u>NICHT</u> tun sollte											
						•					

Première partie, questions à choix multiple

Pour chaque question marquer la case correspondante à la réponse correcte sans faire de ratures. Il n'y a qu'**une seule** réponse correcte par question.

Question 1: Soit $(a_n)_{n\geq 1}$ la suite définie par

$$a_n = (-1)^{n+1} + \left(-\frac{1}{2}\right)^n + \frac{3}{n}.$$

Alors:

- $\lim_{n \to \infty} \inf a_n = -1 \text{ et } \lim_{n \to \infty} \sup a_n = 1$ $\lim_{n \to \infty} \inf a_n = -\frac{1}{4} \text{ et } \lim_{n \to \infty} \sup a_n = \frac{3}{2}$

Question 2: Soit $(a_n)_{n\geq 1}$ la suite définie par $a_n=(-1)^n+\frac{1}{n}$, et soit $A=\{a_1,a_2,a_3,\dots\}$. Alors:

 \bigcap inf A=0 et sup $A=\frac{3}{2}$

 \bigcap inf A = -1 et sup $A = \frac{3}{5}$

 \bigcap inf A = 0 et sup A = 1

Question 3: Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par

$$f(x) = \begin{cases} \frac{e^x - 1}{x} & \text{si } x \neq 0, \\ 1 & \text{si } x = 0. \end{cases}$$

Alors:

 $\int f'(0) = 1$

 $\int f'(0) = \frac{1}{2}$

| f n'est pas dérivable en 0

f'(0) = e

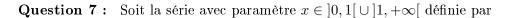
Question 4: Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par $f(x) = 2^x + x^2$. Alors :

- il existe $c \in [2,3]$ tel que f'(c) = 9
- il existe $c \in]0,1[$ tel que f'(c)=9
- il existe $c \in [3, 4[$ tel que f'(c) = 9 il existe $c \in [1, 2[$ tel que f'(c) = 9

Question 5: L'intégrale $\int_0^{\pi} e^x \cos(2x) dx$ vaut

Question 6: Soit I un intervalle non-vide de \mathbb{R} , $f: I \to \mathbb{R}$ une fonction, et $\mathrm{Im}(f)$ l'ensemble image de f. Parmi les affirmations ci-dessous, laquelle est vraie pour tous les choix possibles de I et de f?

- Si I est fermé et borné et si Im(f) est ouvert, alors f n'est pas continue sur I.
- Si I est borné et si Im(f) est fermé et si f est continue sur I, alors I est fermé.
- Si I est fermé et borné et si Im(f) est fermé, alors f est continue sur I.
- Si I est borné et si Im(f) est borné, alors f est continue sur I.



$$\sum_{n=1}^{\infty} \frac{1}{(\log(x))^n} \, .$$

Alors la série converge si et seulement si

Question 8: L'intégrale $\int_0^2 \frac{1}{x^2 + 3x + 2} dx$ vaut

Question 9 : Une des solutions de l'équation $z^5 = \left(1 + \sqrt{3}\,\mathrm{i}\right)^2$ est

Question 10 : Soit $f \colon [0,\pi] \to \mathbb{R}$ la fonction définie par

$$f(x) = (x+1)\sin(x) + \cos(x) + e^{\sin(x)}$$
.

Alors, l'ensemble image de f est

Question 11: L'intervalle de convergence de la série entière

$$\sum_{n=0}^{\infty} \frac{4^n}{n+1} (x-1)^n$$

est

Question 12 : Soit $(x_n)_{n\geq 1}$ la suite définie par

$$x_n = \left(\cos\left(\sqrt{\frac{2}{n}}\right)\right)^n.$$

Alors la limite $\lim_{n\to\infty} x_n$ vaut

$$\square$$
 1 \square $\frac{1}{e}$ \square e \square 0

$$f(x) = \begin{cases} \frac{\sin(x)}{|x|} & \text{si } x \neq 0, \\ 1 & \text{si } x = 0. \end{cases}$$

Alors:

- f est continue sur \mathbb{R} , mais pas dérivable en x=0
- f est dérivable en x=0
- $\int f$ est dérivable à droite de x=0
- $\prod_{x\to 0} \lim_{x\to 0} f(x)$ existe mais f n'est pas continue en x=0

Question 14: Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par $f(x) = e^{1+x-\cos(x)}$. Le développement limité d'ordre 3 de f autour de $x_0 = 0$ est donné par

- $f(x) = 1 x + x^2 \frac{2}{3}x^3 + o(|x|^3)$
- $f(x) = 1 + x + x^2 + \frac{2}{3}x^3 + o(|x|^3)$
- $f(x) = 1 x + \frac{1}{3}x^3 + o(|x|^3)$
- $f(x) = 1 + x \frac{1}{3}x^3 + o(|x|^3)$

Question 15: Soit $(u_n)_{n\geq 0}$ la suite définie par $u_0=1$ et, pour $n\geq 1$, $u_n=-\frac{2}{3}u_{n-1}+2$. Alors :

Question 16 : Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par

$$f(x) = \begin{cases} |4 - x^2| & \text{si } x \le 0, \\ 4|x^2 - 1| & \text{si } x > 0. \end{cases}$$

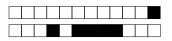
Alors:

- | f n'est pas continue en x=1
- $\int f$ n'est pas continue en x=0
- $\int f$ n'est pas continue en x=-2
- f est continue sur \mathbb{R}

Question 17: Soit, pour $k \in \mathbb{N}^*$, $a_k = (-1)^k \frac{k+2}{k^3}$ et soit $s_n = \sum_{k=1}^n a_k$. Alors:

- \square la série $\sum_{k=1}^{\infty} a_k$ converge absolument

- \square la série $\sum_{k=1}^{\infty} a_k$ converge, mais ne converge pas absolument



Question 18 : L'intégrale généralisée $\int_{-\infty}^{\infty} \frac{e^x}{1 + e^{2x}} dx$ vaut

 $\frac{\pi}{2}$

 \Box 1

 \square $\arctan\left(\frac{1}{2}\right)$

Deuxième partie, questions du type Vrai ou Faux

Pour chaque question, marquer (sans faire de ratures) la case VRAI si l'affirmation est **toujours vraie** ou la case FAUX si elle **n'est pas toujours vraie** (c'est-à-dire si elle est parfois fausse).

Question 19: Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction telle que $\lim_{x \to +\infty} f(x) = +\infty$ et soit $(a_n)_{n \geq 0}$ la suite définie par $a_0 = 1$ et, pour $n \geq 1$, $a_n = f(a_{n-1})$. Alors $\lim_{n \to \infty} a_n = +\infty$.

VRAI FAUX

Question 20: Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction strictement monotone. Alors f est surjective.

☐ VRAI ☐ FAUX

Question 21 : La fonction $f \colon \mathbb{R} \to \mathbb{R}$ définie par $f(t) = \int_0^t |x| \, \mathrm{d}x$ est dérivable en t = 0.

☐ VRAI ☐ FAUX

Question 22 : Si la série entière $\sum_{k=0}^{\infty} a_k (x-5)^k$ converge pour x=2, alors elle converge pour x=6.

□ VRAI □ FAUX

Question 23: Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction avec le développement limité d'ordre 2 autour de $x_0 = 0$ donné par $f(x) = a + bx + cx^2 + o(|x|^2)$, où $a, b, c \in \mathbb{R}$. Si f est dérivable en $x_0 = 0$, alors f'(0) = b.

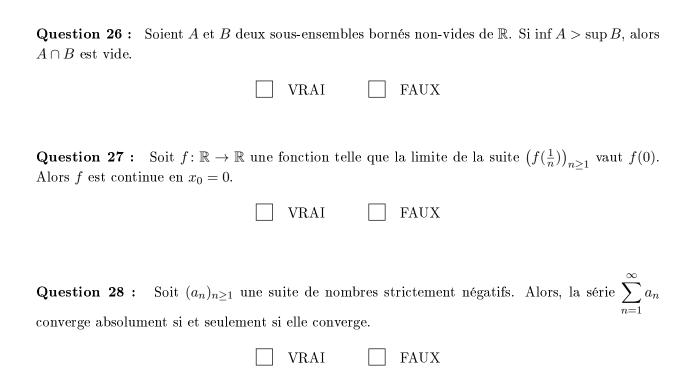
☐ VRAI ☐ FAUX

Question 24: Soient $z_1, z_2 \in \mathbb{C}$ tels que $\operatorname{Re}(z_1 \cdot z_2) = 0$. Alors $\operatorname{Re}(z_1) \cdot \operatorname{Re}(z_2) = 0$.

☐ VRAI ☐ FAUX

Question 25 : Soit $f:]0,1[\to \mathbb{R}$ une fonction continue. Si $\lim_{x\to 0^+} f(x) = 0$ et $\lim_{x\to 1^-} f(x) = 0$, alors f est bornée.

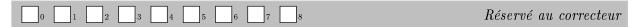
☐ VRAI ☐ FAUX



Troisème partie, questions de type ouvert

Répondre dans l'espace dédié. Votre réponse doit être soigneusement justifiée, toutes les étapes de votre raisonnement doivent figurer dans votre réponse. Laisser libres les cases à cocher : elles sont réservées au correcteur.

Question 29: Cette question est notée sur 8 points.



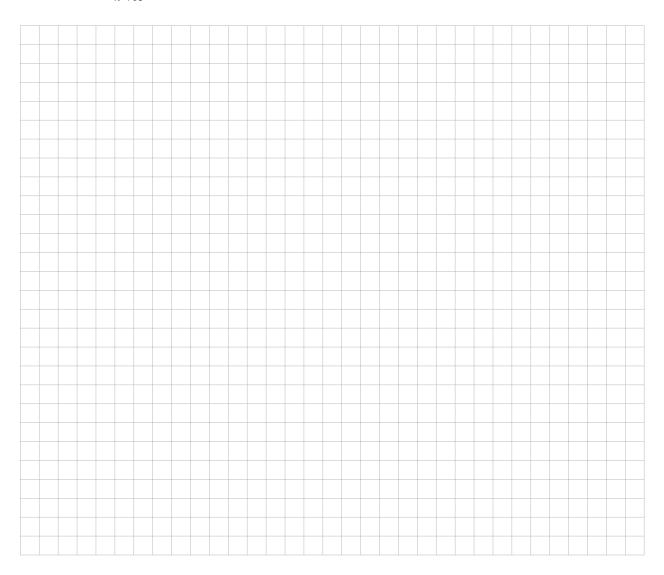
- (a) Énoncer et montrer les formules d'Euler vues au cours.
- (b) En utilisant les formules d'Euler, montrer que pour tous $a, b \in \mathbb{R}$,

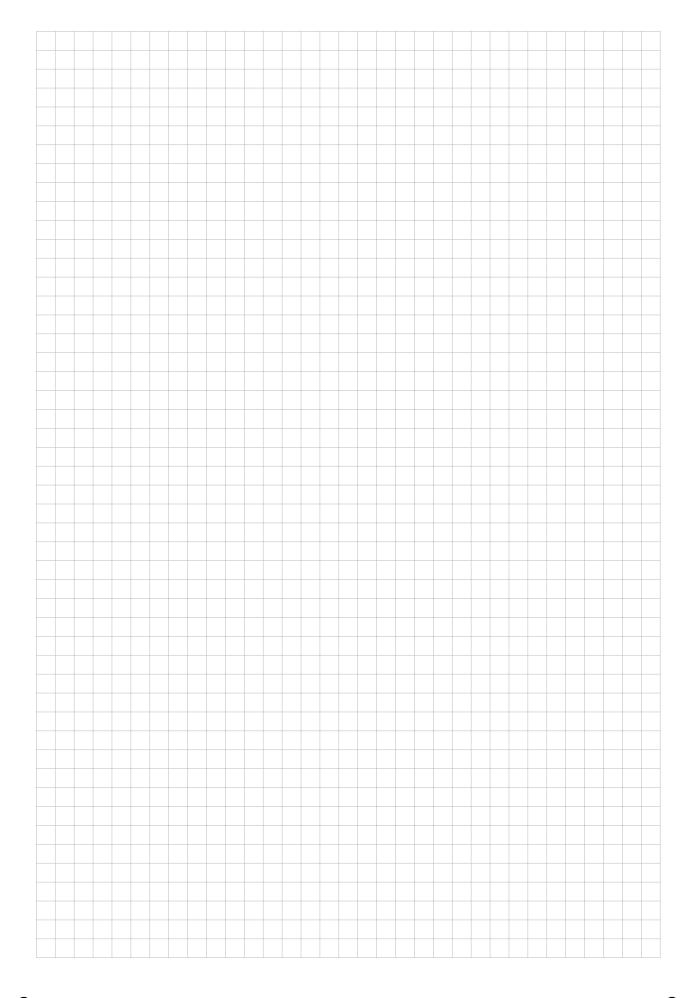
$$\sin(a) + \sin(b) = 2\sin\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right)$$

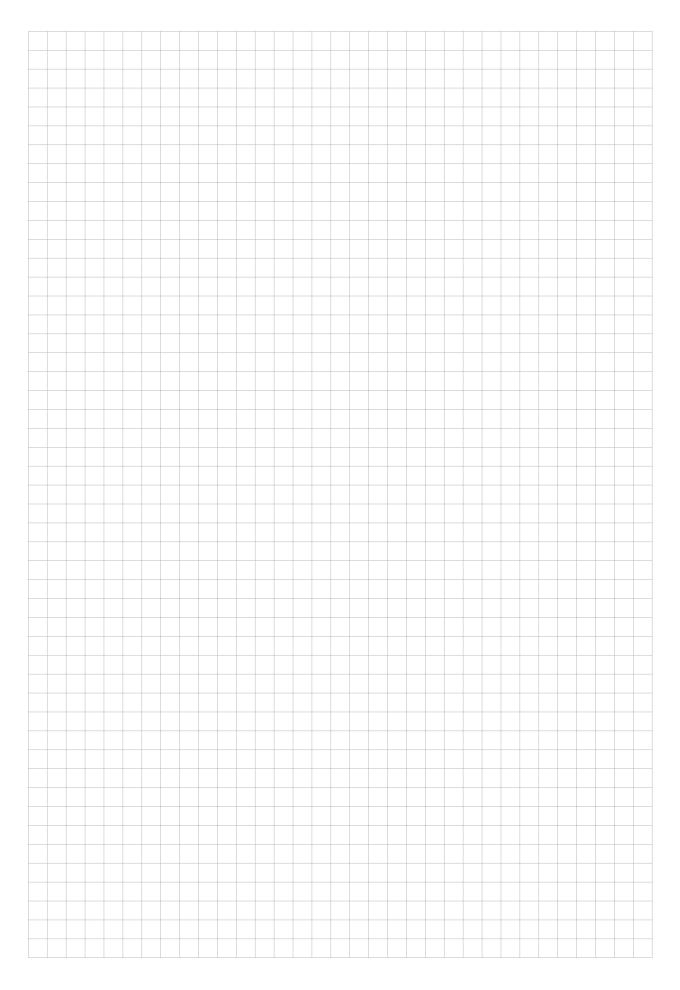
(c) Soit $(x_n)_{n\geq 1}$ la suite définie par

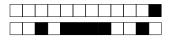
$$x_n = \sin\left(\sqrt{n^2 - 4n + 5}\right) + \sin(2 - n).$$

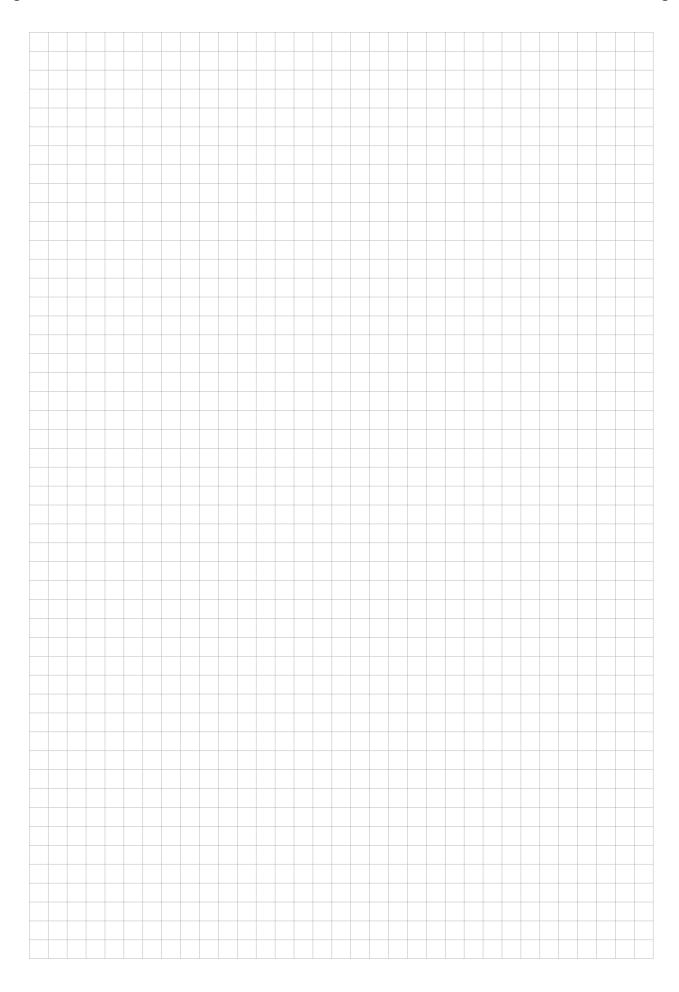
Calculer $\lim_{n\to\infty} x_n$. Justifier soigneusement votre réponse.

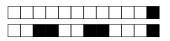












Question 30: Cette question est notée sur 8 points.

	2 3 4 5	6 7 8	Réservé au correcteur
--	---------	-------	-----------------------

(a) À l'aide d'un critère du cours montrer que la série

$$\sum_{k=1}^{\infty} \frac{2^k (k-1)}{(k+1)!}$$

converge.

(b) Montrer par récurrence que pour tout $n \ge 1$,

$$\sum_{k=1}^{n} \frac{2^{k}(k-1)}{(k+1)!} = 2 - \frac{2^{n+1}}{(n+1)!}.$$

(c) En déduire la valeur de la série

$$\sum_{k=1}^{\infty} \frac{2^k (k-1)}{(k+1)!}.$$

