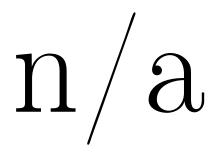
Ens: Zsolt Patakfalvi - Analysis I - (n/a)

21 November 2018, 8:15 - duration: 60 mins



n/a

SCIPER: 999999

Do not turn the page before the start of the exam. This document is double-sided, has 4 pages, the last ones possibly blank. Do not unstaple.

- Place your student card on your table.
- No other paper materials are allowed to be used during the exam.
- Using a **calculator** or any electronic device is not permitted during the exam.
- For the **multiple choice** questions, we give
 - +3 points if your answer is correct,
 - 0 points if you give no answer or more than one,
 - -1 points if your answer is incorrect.
- For the **true/false** questions, we give
 - +1 points if your answer is correct,
 - 0 points if you give no answer or more than one,
 - -1 points if your answer is incorrect.
- Use a black or dark blue ballpen and clearly erase with correction fluid if necessary.
- If a question is wrong, the teacher may decide to nullify it.

Respectez les consignes suivantes Observe this guidelines Beachten Sie bitte die unten stehenden Richtlinien		
choisir une réponse select an answer Antwort auswählen	ne PAS choisir une réponse NOT select an answer NICHT Antwort auswählen	Corriger une réponse Correct an answer Antwort korrigieren
ce qu'il ne faut <u>PAS</u> faire what should <u>NOT</u> be done was man <u>NICHT</u> tun sollte		

First part: multiple choice questions

For each question, mark the box corresponding to the correct answer. Each question has exactly one correct answer.

Question [mc-q01]: Let E be the subset of \mathbb{R} defined by

$$E = \left\{ \sin\!\left(\frac{\pi n}{4}\right) - \sin\!\left(\frac{\pi}{4n}\right) : n \in \mathbb{N} \setminus \{0\} \right\} .$$

Then

 \prod inf E=0

 \prod inf E=-1

 \prod inf $E=-\frac{\sqrt{2}}{2}$

Question [mc-q02]: Let z be the complex number defined by $z = e^{i} + e^{i/3}$. Then

 $|z| = \sqrt{2}$

 $|z| = \sqrt{2 + 2\cos(\frac{2}{3})}$

 $|z| = \sqrt{2 + 2\left(e^{i/3} + e^{-i/3}\right)}$

 $|z| = \sqrt{1 + (e^{2i/3} + e^{-2i/3})}$

Question [truc]: Let $(a_n)_{n\geq 0}$ be an unbounded sequence of real numbers. Then

for all M > 0 there exists n such that $|a_n| \ge M$

for all M > 0, $|a_n| > M$ holds for all $n \ge 0$

either $\lim_{n\to\infty} a_n = +\infty$, or $\lim_{n\to\infty} a_n = -\infty$

there exists n such that $a_n = +\infty$ or $a_n = -\infty$

Question [mc-q04]: Consider a function $g: \mathbb{R} \to \mathbb{R}$ and the sequence of real numbers $(a_n)_{n\geq 0}$ defined recursively by $a_0 = 1$ and, for $n \ge 1$, $a_n = g(a_{n-1})$. Then the sequence $(a_n)_{n \ge 0}$ converges when g is defined by

 $g(x) = \frac{1}{4}x^2 + 1$

 $q(x) = -x^2 + 2x - 2$

Question [mc-q06]: Let $(a_k)_{k\geq 0}$ be a sequence of real numbers and $s_n=\sum_{k=0}^n a_k, n\geq 0$ be the sequence of its partial sums. If $\lim_{n\to+\infty} s_n = 1$, then

 $\lim_{n \to +\infty} \left(s_{2n} - s_n \right) = 0$

Question $[QCM_val_intermed_image_interv_B]$: $Let(x_n)_{n>0}$ be the sequence defined by x_n $\frac{\sin(n\frac{\pi}{2})}{3+\sin(n\frac{\pi}{2})}.$

 $\lim_{n \to \infty} \inf x_n = -\frac{1}{2} \qquad \qquad \lim_{n \to \infty} \sup x_n = 1 \qquad \qquad \lim_{n \to \infty} x_n = \frac{1}{3} \qquad \qquad \lim_{n \to \infty} x_n = 0$

Question [mc-q07]:

Let S be the series with parameter $c \in \mathbb{R}$, defined by

$$S = \sum_{n=1}^{\infty} \frac{n!}{n^{cn}} .$$

Then

 \square S converges if and only if 2 > c > 0

S converges if and only if $c \geq 1$

 \square S converges if and only if $c \ge 0$

 \square S converges if and only if c > 3

Second part: true/false questions

For each question, mark the box (without erasing) TRUE if the statement is **always true** and the box FALSE if it is **not always true** (i.e., it is sometimes false).

Question [tf-01-sacha]: Let A be a bounded subset of \mathbb{R} , and $c = \sup A$. Then for all $\epsilon > 0$ there exists $x \in A$ such that $x + \epsilon \geq c$.

TRUE

FALSE

Question [tf-3]: Let $(a_n)_{n\geq 0}$ be a sequence of real numbers such that the sequence $(b_n)_{n\geq 0}$ defined by $b_n=\cos(a_n)$ converges. Then the sequence $(a_n)_{n\geq 0}$ converges.

TRUE

FALSE

Question $[\operatorname{TF}_limit_func2]: Let(x_n)_{n\geq 1}$ be defined by $x_n=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{n}$, and let $f:\mathbb{R}\to\mathbb{R}$ be defined by $f(x)=\frac{x^2}{x^2+1}$. Then $\lim_{n\to\infty}f(x_n)=1$.

TRUE

FALSE

Question $[\mathrm{TF}_serie_param]: Theseries \sum_{n=0}^{\infty} \left(\frac{x^2-1}{x^2+1}\right)^n$ converges for all $x \in \mathbb{R}$.

TRUE

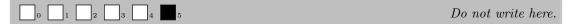
FALSE

Catalog

Third part, open question

Answer in the empty space below. Your answer should be carefully justified, and all the steps of your argument should be discussed in details. Leave the check-boxes emtyp, they are used for the grading.

Question 12: This question is worth 5 points.



Consider the Fibonacci sequence, which is given by the recursive formula

$$x_n = x_{n-1} + x_{n-2}$$

and by the initial values

$$x_0 = x_1 = 1.$$

Recall that in class we showed that

$$\lim_{n\to\infty}\frac{x_n}{x_{n-1}}=\frac{1+\sqrt{5}}{2}.$$

- (a) Show by induction that $x_n \geq n$ for all $n \in \mathbb{N}$ [2 pts].
- (b) Show that $\lim_{n\to\infty} \sqrt[x_n]{n} = 1$ [3 pts].

