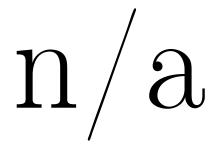


Lecturer: R. Svaldi Analysis I - (n/a) 11th January 2021 3 hours



n/a

SCIPER: 999999

Do not turn the page before the start of the exam. This document is double-sided, has 8 pages, the last ones possibly blank. TOTAL: 34 questions. Do not unstaple.

- Place your student card on your table.
- The only papers you are allowed to use are the booklet of the exam and the scratch paper provided by the proctors.
- Using a **calculator** or any electronic device is not permitted during the exam.
- For the **multiple choice** questions, we give :
 - +3 points if your answer is correct,
 - 0 points if you give no answer or more than one,
 - -1 points if your answer is incorrect.
- For the **true/false** questions, we give :
 - +1 points if your answer is correct,
 - 0 points if you give no answer or more than one,
 - -1 points if your answer is incorrect.
- Use a black or dark blue ballpen and clearly erase with correction fluid if necessary.
- If a question is wrong, the teacher may decide to nullify it.

Respectez les consignes suivantes Read these guidelines Beachten Sie bitte die unten stehenden Richtlinien											
choisir une réponse select an answer Antwort auswählen			ne PAS choisir une réponse NOT select an answer NICHT Antwort auswählen					Corriger une réponse Correct an answer Antwort korrigieren			
X	\checkmark										
		ce qu'il ne f	aut <u>PAS</u> fa	ire wha	at should <u>I</u>	NOT be d	one wa	s man <u>N</u> I	ICHT tun sollte		
						•					

Part 1: this part of the exam contains 23 multiple choice questions.

For each question, mark the box corresponding to the answer that you wish to select as the correct one.

Each question has a	unique correct answer.		
Question [QCM-comp	plexes-A]: Let z be the	e complex number $z := 1$	$+\sqrt{3}i$. Then,
			$\operatorname{Im}(z^{11}) < 0$
Question [QCM-comp	olexes-B]: Consider th	e sets $A, B \subseteq \mathbb{C}$,	
A :=	$= \left\{ z \in \mathbb{C} \colon z^2 \left(z - 2 \right) = \right.$	0 , $B := \{z \in \mathbb{C} : \text{Re}$	$(z)=1\}.$
Then,			
$A \cap B$ consists	exactly of two distinct p	oints.	
$A \cap B$ is the en	apty set.		
$A \cap B$ consists	exactly of one point.		
$\square A \cap B$ contains	a line.		
Question [QCM-cont $\mathbb{R},$	sin-deriv-C1-B]: Let a	,b be two real numbers for	which the function $f : \mathbb{R} \to \mathbb{R}$
	$f(x) := \begin{cases} ax \\ \underline{\sqrt{1}} \end{cases}$	$\frac{+b}{x} \qquad \text{for } x \le 0$ $\frac{+x-1}{x} \qquad \text{for } x > 0$	
is differentiable at x	= 0. Then,		
$ f(-3) = \frac{1}{4} $	$ f(-3) = -\frac{3}{8} $	$f(-3) = \frac{7}{8}$	$ f(-3) = \frac{3}{8} $
Question [QCM-cont	zin-vs-derivab-A]: Le	et $f \colon \mathbb{R} \to \mathbb{R}$ be the functi	on
	(1	for $x \leq 0$,	
	$f(x) := \left\{ \sqrt{1} \right\}$	$ for x \le 0, -x^2 for 0 < x \le 1, $	
	0	for $x > 1$.	
Then,			
$\int f$ is continuous	at $x = 0$ and f is different	entiable at $x = 1$	
		and f is differentiable at x	c = 1
f is differential	ole at $x = 0$ and f is con	tinuous at $x = 1$	
the right deriva	ative of f exists at $x = 0$	and f is differentiable at	x = 1
Question [QCM-derivation $x = 1$ is	ivee-B]: The derivativ	we of the function $f(x) :=$	$= (1+x^2)^{1+x^2}$ at the point
$ 8 \left(\log(2) + 1 \right) $		\Box 4	<u> </u>

Catalog

Question [QCM-dev-limite-A]: Let $f:]-1,1[\to \mathbb{R}$ be the function $f(t) := \frac{1}{4+3t}$, and take $t_0 = 0$. Then the expansion of f to order 2 around t_0 is given by

$$f(t) = \frac{1}{4} - \frac{3}{16}t + \frac{9}{64}t^2 + t^2\varepsilon(t)$$

$$f(t) = \frac{1}{4} - \frac{3}{16}t + \frac{9}{128}t^2 + t^2\varepsilon(t)$$

$$f(t) = \frac{1}{4} + \frac{3}{16}t - \frac{9}{64}t^2 + t^2\varepsilon(t)$$

$$f(t) = \frac{1}{4} - \frac{3}{16}t + \frac{9}{32}t^2 + t^2\varepsilon(t)$$

Question [QCM-dev-limite-B]: Let $f: \mathbb{R} \to \mathbb{R}$ be the function $f(x) := \sin(\sin(x))$ and take $x_0 = 0$. Then, the expansion of f to order 5 around x_0 is given by

$$f(x) = x - \frac{1}{3}x^3 + \frac{1}{10}x^5 + x^5\varepsilon(x)$$

$$f(x) = x - \frac{1}{6}x^3 + \frac{1}{120}x^5 + x^5\varepsilon(x)$$

$$f(x) = x - \frac{1}{3}x^3 + \frac{1}{120}x^5 + x^5\varepsilon(x)$$

Question [QCM-induction-B1]:

Let $f: \mathbb{R} \to \mathbb{R}$ be the function $f(x) := x^3$. We define the function $f_1 := f$ and, for any natural number $n \geq 2$, the function $f_n := f \circ f_{n-1}$. Then, for all natural numbers $m \geq 1$,

$$f_m(x) = x^{(3^m)}$$

$$f_m(x) = x^{(3^m)}$$
 $f_m(x) = x^{(3m)}$ $f_m(x) = (3x)^m$ $f_m(x) = mx^3$

$$\int f_m(x) = (3x)^m$$

$$f_m(x) = mx^3$$

Question [QCM-inf-sup-B]: Let $A \subset \mathbb{R}$ be the set $A := \{x \in \mathbb{R} : 0 < \arctan(\frac{1}{x}) < \frac{\pi}{4}\}$. Then,

Question [QCM-int-generalisee-B]: The generalised integral $\int_{1}^{2} \frac{x+1}{\sqrt{2-x}} dx$

converges and its value is
$$\frac{16}{3}$$

| converges and its value is 4

$$\square$$
 converges and its value is $\frac{8}{3}$

diverges

Question [QCM-integrale-second-A]: The value of the integral $\int_{-\pi}^{\pi} x \sin(x) dx$ is

$$2\pi$$

$$| -\tau$$

$$\frac{3\pi}{2}$$

Question [QCM-integrale-second-B]: The value of the integral $\int_0^1 x \sqrt{x^2 + 1} dx$ is

Question [QCM-limite-B]: Let $(a_n)_{n\geq 0}$ be the sequence $a_n := \frac{(n+3)^{1/2} - n^{1/2}}{(n+1)^{-1/2}}$. Then,

$$\lim_{n\to\infty}a_n=\tfrac{3}{2}$$

$$\lim_{n \to \infty} a_n = \frac{3}{2} \qquad \qquad \lim_{n \to \infty} a_n = 0 \qquad \qquad \lim_{n \to \infty} a_n = 3 \qquad \qquad \lim_{n \to \infty} a_n = +\infty$$

	Catal	OG			
Question [QCM-limite-prolongmt-A]: Let $f:]-\pi, \pi[\ \setminus \{0\} \to \mathbb{R}$ be the function defined as $f(x) = \frac{\arctan(x^2)}{x\sin(x)}$. Then,					
f can be extended to a function f can be extended to a function f can be extended to a function f cannot be extended to f cannot be extended to f cannot be extended to f cannot	n $\hat{f}(x)$ which in $\hat{f}(x)$ which i	s continu	$\begin{array}{l} \text{nous at } x = 0 \text{ a} \\ \text{nous at } x = 0 \text{ a} \end{array}$	and $\hat{f}(0) = 0$. and $\hat{f}(0) = \frac{\pi}{2}$.	
${f Question}$ [QCM-limite-prolongmt-	D]: Which of	f the fund	etions $f, g: \mathbb{R}$ –	$\rightarrow \mathbb{R}$, defined as	
$f(x) := \begin{cases} \sqrt{ x } \sin(\frac{1}{x}) \\ 1 \end{cases}$	for $x \neq 0$, for $x = 0$,	g(x) :=	$\begin{cases} \frac{1}{x}\arctan\left(x\right) \\ 1 \end{cases}$	for $x \neq 0$, for $x = 0$,	
are continuous at $x = 0$?					
\square Both f and g \square Only	f	Onl	у <i>g</i>	\square Neither f nor g	
Question [QCM-minmax-A]: Given that admits a point of local minimum			which is twice	differentiable on $\mathbb R$ and	
$f'(0) = 0 \text{ and } f''(0) \ge 0$		f'(0	f''(0) = 0 and f''(0)	$0) \neq 0$	
$ f'(0) \neq 0 \text{ and } f''(0) \neq 0 $		\[f'(0	f''(0) = 0 and f''(0)	$0) \leq 0$	
Question [QCM-serie-A]: Let (a_n)	$n_{n\geq 1}$ be the sec	quence a_i	$n_i := (-1)^n \sin\left(\frac{1}{n}\right)$	$\left(\frac{1}{n^2}\right)$. Then,	
			$(a_n)^2$ converges	s, but $\sum_{n=1}^{\infty} a_n$ diverges	
	ot converge		$\sum_{n=0}^{\infty} a_n = 0$, but $\sum_{n=0}^{\infty} a_n = 0$	$\sum_{n=1}^{\infty} a_n \text{ diverges}$	
Question [QCM-serie-entiere-A]: $\sum_{n=0}^{\infty} \sqrt{n} (x+1)^n$. Then,					
$\sum_{n=0}^{\infty} \sqrt{n} (x+1)^n. \text{ Then,}$ $\square I = \mathbb{R}$ $\square I = [-$	$-\frac{5}{2},\frac{1}{2}$	\square $I =$]-1,1[I =]-2,0[
${f Question}$ [QCM-serie-parametre-E	B]: For what	values of	the parameter	$b \in \mathbb{R}$ does the series	
	$\sum_{k=1}^{\infty} \left(b + \right.$	$\left(\frac{1}{k}\right)^k$			

converge?

 $b \leq 1$ b < 1

Catalog
Question [QCM-suites-convergence-B]: Let $(a_n)_{n\geq 1}$ be the sequence $a_n:=\frac{(5n+1)^n}{n^n5^n}$. Then,
Question [QCM-suites-convergence-C]: Let $c \in \mathbb{R}$, and let $(a_n)_{n \geq 1}$ be the sequence
$a_n := \begin{cases} \sum_{k=0}^n \frac{2^k}{k!} & \text{for } n \text{ even,} \\ \left(\sum_{k=0}^n \frac{1}{k!}\right)^c & \text{for } n \text{ odd.} \end{cases}$
Then,

- the sequence $(a_n)_{n\geq 1}$ converges for exactly one value of cThe sequence $(a_n)_{n\geq 1}$ diverges for any value of c

Question [QCM-theo-accr-finis-B]: Let $f: [0,4] \to \mathbb{R}$ be a function which is continuous on [0,4], differentiable on]0,4[and such that $f'(x) \ge 2$ for all $x \in]0,4[$. Then,

Question [QCM-val-intermed-image-interv-B]: Let $f: \mathbb{R} \to \mathbb{R}$ be the function $f(x) := x^2 \sin(x^2)$ and let $R(f) \subset \mathbb{R}$ be the range of f,

$$R(f) := \left\{ y \in \mathbb{R} \, | \, \exists \, x \in \mathbb{R} \text{ such that } f(x) = y \right\}.$$

Then,

Catalog

Part 2: this part of the exam contains 11 true/false questions.

For each question, mark the box next to "TRUE" if you think the statement of the question is correct or mark the box next to "FALSE" if you think the statement of the question is incorrect.

Question [TF-complexes-A]: For all given $y \in \mathbb{R}$, $y \neq 0$, the equation $z^4 = iy$, in the indeterminate z, has exactly 4 distinct solutions in \mathbb{C} .

TRUE FALSE

Question [TF-derivabilite-discussion-A]: Let $g,h:]-1,1[\to \mathbb{R}$ be two functions which are differentiable on]-1,1[. Assume that g(0)=h(0)=0, and $h'(x)\neq 0$ for all $x\in]-1,1[$. If $\lim_{x\to 0}\frac{g'(x)}{h'(x)}$ does not exist, then also $\lim_{x\to 0}\frac{g(x)}{h(x)}$ does not exist.

TRUE FALSE

Question [TF-dev-limite-A]: Let $f: \mathbb{R} \to \mathbb{R}$ be a function and take $x_0 = 0$. Assume that f admits an expansion to order 2 around x_0 given by $f(x) = a + bx + cx^2 + x^2 \varepsilon(x)$. Then, the expansion to order 2 around x_0 for the function $g(x) := f(x)^3$ is given by $g(x) = a^3 + b^3x + c^3x^2 + x^2\varepsilon(x)$.

TRUE FALSE

Question [TF-fonction-etc-B]: Let $f: [0,1[\to \mathbb{R}]]$ be a monotone function which is non-constant and differentiable over [0,1[. Then, either $f'(x) \ge 0$ for all $x \in [0,1[$ or $f'(x) \le 0$ for all $x \in [0,1[$.

TRUE FALSE

Question [TF-induction-suites-limites-B]: Let $(a_n)_{n\geq 0}, (b_n)_{n\geq 0}$ be two converging sequences. Assume that $b_n\neq 0$ for all $n\geq 0$. Then, the limit $\lim_{n\to\infty}\frac{a_n}{b_n}$ exists.

TRUE FALSE

Question [TF-inf-sup-A]: Let $A \subset \mathbb{R}$ be a subset of the real numbers. If $\inf A \in A$ and $\sup A \in A$, then A is a closed interval.

TRUE FALSE

CATALOG

Question [TF-integrale-A]: Let $(a_n)_{n\geq 1}$ be a sequence of real numbers such that $\lim_{n\to\infty} a_n = 1$, and let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function. Let $(b_n)_{n\geq 1}$ be the sequence

$$b_n = \int_0^{a_n} f(x) \, \mathrm{d}x, \qquad n \ge 1.$$

Then, the sequence $(b_n)_{n\geq 1}$ converges.

TRUE FALSE

Question [TF-soussuite-A]: Let $f: \mathbb{R} \to \mathbb{R}$ be a function. If there exists $a \in \mathbb{R}$ such that $\lim_{x \to a} f(x) = +\infty$, then f is not continuous on \mathbb{R} .

TRUE FALSE

Question [TF-serie-B]: Let $f: \mathbb{N} \to \mathbb{R}$ be a function such that for all $n \geq 1$, f(n) > n. Then the series $\sum_{n=1}^{\infty} \frac{1}{f(n)}$ converges.

TRUE FALSE

Question [TF-serie-entiere-A]: Let $(a_k)_{k\geq 0}$ be a sequence of real numbers such that for all $k\geq 0,\ a_k\neq 0,$ and $\lim_{k\to\infty}\left|\frac{a_{k+1}}{a_k}\right|=0.$ Then the power series $\sum_{k=0}^\infty a_k\,x^k$ converges for all $x\in\mathbb{R}$.

TRUE FALSE

Question [TF-soussuite-B]: Let $(x_n)_{n\geq 0}$ be a sequence of real numbers for which $\lim_{n\to\infty} x_n = +\infty$. Then, the sequence $(x_n)_{n\geq 0}$ does not contain any bounded subsequence.

TRUE FALSE

CATALOG