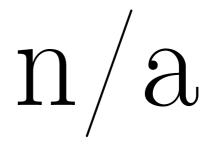


Lecturer: Z. Patakfalvi Analysis I - (n/a) 13th January 2020 3 hours



n/a

SCIPER: 999999

Do not turn the page before the start of the exam. This document is double-sided, has 16 pages, the last ones possibly blank. TOTAL: 31 questions. Do not unstaple.

- Place your student card on your table.
- The only papers you are allowed to use are the booklet of the exam and the scratch paper provided by the proctors.
- Using a **calculator** or any electronic device is not permitted during the exam.
- For the **multiple choice** questions, we give :
 - +3 points if your answer is correct,
 - 0 points if you give no answer or more than one,
 - -1 points if your answer is incorrect.
- For the **true/false** questions, we give :
 - +1 points if your answer is correct,
 - 0 points if you give no answer or more than one,
 - -1 points if your answer is incorrect.
- Use a black or dark blue ballpen and clearly erase with correction fluid if necessary.
- If a question is wrong, the teacher may decide to nullify it.

Respectez les consignes suivantes Read these guidelines Beachten Sie bitte die unten stehenden Richtlinien										
choisir une réponse select an answer Antwort auswählen			ne PAS choisir une réponse NOT select an answer NICHT Antwort auswählen					nswer	Corriger une réponse Correct an answer Antwort korrigieren	
X	\checkmark									
ce qu'il ne faut <u>PAS</u> faire what should <u>NOT</u> be done was man <u>NICHT</u> tun sollte										
						•				

First part: multiple choice questions

For each question, mark the box corresponding to the correct answer. Each question has **exactly one** correct answer.

Question [QCM-complexes-A]: The imaginary part of $\left(-1+i\sqrt{3}\right)^5$ is

 $-16\sqrt{3}$. $\boxed{}32\sqrt{3}$. $\boxed{}32\sqrt{3}$ i. $\boxed{}16\sqrt{3}$.

Question [QCM-contin-deriv-C1-B]: Let $f: \mathbb{R} \to \mathbb{R}$ be the function defined by

$$f(x) = \begin{cases} x \sin(e^{\frac{1}{x}} - 1) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

Then.

f is differentiable over \mathbb{R} , but f' is not continuous over the entire \mathbb{R} .

f is continuous over \mathbb{R} , and it is differentiable from the left but not from the right at x=0.

Question [QCM-cont-vs-derivab-A]: For which numbers $a, b \in \mathbb{R}$ is the function $f: \mathbb{R} \to \mathbb{R}$, defined by

$$f(x) = \begin{cases} (ax+1)(bx-1) & \text{if } x \ge 0, \\ \sin(a^2x) - b & \text{if } x < 0, \end{cases}$$

differentiable at x = 0?

 $a = \frac{-1 \pm \sqrt{5}}{2}$ and b = 1

Question [QCM-dev-limite-B]: Define $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = \frac{1}{1 + e^{-x}}$. The Taylor expansion of order 3 of f around $x_0 = 0$ is

Question [QCM-suites-recurrer Then	$[x \in B]$: Set x_0	$\in \mathbb{R}$, and let $x_{n+1} = x_n$	$-\frac{1}{3^n}$ for every $n \in \mathbb{N}$.			
for all $x_0 \in \mathbb{R}$, the sequence $(x_n)_{n \geq 0}$ converges to $x_0 - \frac{3}{2}$.						
\square for all $x_0 \in \mathbb{R}$, the sequence	for all $x_0 \in \mathbb{R}$, the sequence $(x_n)_{n \geq 0}$ converges to 0.					
for all $x_0 \in \mathbb{R}$, the sequence $(x_n)_{n \geq 0}$ converges to x_0 .						
for all $x_0 \in \mathbb{R}$, the sequence $(x_n)_{n \geq 0}$ is divergent.						
Question [QCM-inf-sup-A]: Set	$A = \left\{ x \in \mathbb{R}_+^* \setminus \right.$	$\{1\}: \frac{1}{\text{Log}(x)} < 1 $. The	en,			
Inf $A=0$.		\square A is not bounded fr	om below.			
Question [QCM-integrale-first	$[-A]: \operatorname{Set} I = \int_{0}^{\infty} $	$e^{(x^2)} dx$. Then,				
	9 ($ 0 \le I < \frac{14}{3}.$			
Question [QCM-integrale-secon	nd-B]: Consider	the integral $I = \int_{1}^{2} x \operatorname{Lo}$	g(1+x) dx. Then,			
$I = \frac{3}{2} \operatorname{Log}(3) - \frac{1}{4}$.		$ I = 2\operatorname{Log}(3) + \frac{1}{2}\operatorname{Log}(3) $	g(2).			
$I = 2 \operatorname{Log}(3) - \frac{1}{2} \operatorname{Log}(2).$		$ I = \frac{1}{2} \operatorname{Log}(2) + \frac{1}{4}. $				
Question [QCM-int-generalises	e-B]: The impro	oper integral $\int_{1}^{\infty} \frac{x^{3/2} + x^{3/2}}{x^3}$	$\frac{3}{2} dx$			
converges, and its value is $\frac{7}{2}$.		converges, and its va	alue is $\frac{8}{3}$.			
\square converges, and its value is $-$	$\frac{7}{2}$.	diverges.				
Question [QCM-limite-prolongment	nt-A]: Among t	he functions $f, g, h : \mathbb{R} \to$	\mathbb{R} defined by			
$f(x) = \begin{cases} \sqrt{x} \sin(\frac{1}{x}) \\ -\sqrt{-x} \end{cases}$	$ \begin{array}{ll} \text{if } x > 0 \\ \text{if } x \le 0 \end{array} $	$g(x) = \begin{cases} x \operatorname{sh}\left(\frac{1}{x}\right) & \text{if } x \\ 0 & \text{if } x \end{cases}$	$ \begin{array}{l} x > 0 \\ x \le 0 \end{array}, $			
	`					
find those that are continuous at a	x=0:					
f and h .	$\operatorname{nd} g$.		all three.			

Catalog

Question [QCM-limsup-liminf-B]: Let $(a_n)_{n\geq 1}$ be the sequence defined as follows: for all $n\geq 1$,

$$a_n = \sin\left(\frac{\pi}{4} + n\frac{\pi}{2}\right) + \cos\left(\frac{\pi}{4} + n\frac{\pi}{2}\right).$$

Then,

- $\lim \sup_{n \to \infty} a_n = \sqrt{2} \quad \text{and} \quad \liminf_{n \to \infty} a_n = -\sqrt{2}. \qquad \qquad \qquad \lim \sup_{n \to \infty} a_n = 0 \quad \text{and} \quad \liminf_{n \to \infty} a_n = -\sqrt{2}.$

Question [QCM-serie-B]: Define $a_n = (\sqrt{n+2} - \sqrt{n+1}) \sin(\frac{1}{n})$, for every $n \in \mathbb{N}^*$. Then,

- both the series $\sum_{n=1}^{\infty} a_n$ and the series $\sum_{n=1}^{\infty} (-1)^n a_n$ are convergent.
- \square the series $\sum_{n=1}^{\infty} a_n$ is convergent, but it is not absolutely convergent.
- \square the series $\sum_{n=0}^{\infty} a_n$ is divergent.
- \square the series $\sum_{n=0}^{\infty} (-1)^n a_n$ is divergent.

Question [QCM-serie-entiere-B]: Let R be the radius of convergence of the power series

$$f(x) = \sum_{n=1}^{\infty} \left(1 + \frac{1}{n^2}\right)^{(n^b)} x^n.$$

If b=2, then R=1.

If b=3, then R=e.

If b = 1, then $R = e^{-1}$.

 \prod If b=4, then $R=e^2$.

Question [QCM-serie-parametre-B]: The series $\sum_{n=1}^{\infty} \frac{1}{\sqrt[5]{n^{\frac{2}{\alpha}}(n^{2\alpha}+1)}}$ converges if

- $0 < \alpha < \frac{1}{2}.$

Question [QCM-suites-convergence-C]: The limit $\lim_{n\to\infty} \frac{\sqrt{n}}{\sqrt{5n+\sqrt{3n-\sqrt{2n}}}}$

exists, and it is $\frac{1}{\sqrt{5}}$.

does not exist.

exists, and it is $\frac{1}{\sqrt{6}}$.

exists, and it is $\frac{1}{\sqrt{5+\sqrt{3-\sqrt{2}}}}$.

Question [QCM-suites-recurrence-A]: Define $f: \mathbb{R}^* \to \mathbb{R}$ by $f(x) = \frac{1}{2} \left(x + \frac{2}{x} \right)$, and define
the sequence $(x_n)_{n\geq 1}$ by setting $x_{n+1}=f(x_n)$ for all $n\in\mathbb{N}$, and for some fixed $x_0\in\mathbb{R}^*$.
If $x_0 = -2$, then the sequence $(x_n)_{n \ge 1}$ converges to $-\sqrt{2}$.
\square If $x_0 = 1$, then the sequence $(x_n)_{n \ge 1}$ converges to $-\sqrt{2}$.
If $x_0 = \frac{1}{\sqrt{2}}$, then the sequence $(x_n)_{n \geq 1}$ converges to $-\sqrt{2}$.
There does not exist any $x_0 \in \mathbb{R}^*$ for which the sequence $(x_n)_{n\geq 1}$ converges to $-\sqrt{2}$.
Question [QCM-theo-accr-finis-B-NEW]: Define the function $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = x \cos(x) $.
There exists $u \in \left]0, \frac{\pi}{4}\right[$ such that $f'(u) = \frac{\sqrt{2}}{2}$.
There exists $u \in \left] -\frac{\pi}{8}, \frac{\pi}{8} \right[$ such that $f'(u) = 0$.
\Box There is a single local minimum of f on the entire \mathbb{R} .
Question [QCM-val-intermed-image-interv-B]: Let $f: [1, +\infty[\to \mathbb{R} \text{ be the function defined by } f(x) = \sin(\operatorname{Arctg}(\sqrt{x}))$. Then the range of f is

Second part: true/false questions

For each question, mark the box (without erasing) TRUE if the statement is **always true** and the box FALSE if it is **not always true** (i.e., it is sometimes false).

Question [TF-complexes-B]: For all $\omega \in \mathbb{C}$, $\omega \neq 0$, there exist infinitely many complex numbers $z \in \mathbb{C}$ such that Im $(\omega z) = 0$.

TRUE FALSE

Question [TF-cont-deriv-C1-A]: Consider a function $f: \mathbb{R} \to \mathbb{R}$. If f is differentiable at x_0 , then the function $g: \mathbb{R} \to \mathbb{R}$ defined by $g(x) = \sin(f(x))$ is also differentiable at x_0 .

TRUE FALSE

Question [TF-derivabilite-discussion-B]: Let $f: \mathbb{R} \to \mathbb{R}$ be the function defined by

$$f(x) = \begin{cases} x^2 & \text{if } x \in \mathbb{Q} \\ x & \text{if } x \notin \mathbb{Q} \end{cases}.$$

Then f is continuous at exactly two points.

TRUE FALSE

Question [TF-dev-limite-C]: Let $f:]-1,1[\to \mathbb{R}$ be a C^3 function, that is, the third derivative of f exists and it is continuous. Assume that the Taylor expansion of order 2 of f around $x_0=0$ is given by $f(x)=1+2x+x^2+x^2\varepsilon_1(x)$. Then the Taylor expansion of the function $(f(x))^2$ around $x_0=0$ is $(f(x))^2=1+4x^2+x^2\varepsilon_2(x)$.

TRUE FALSE

Question [TF-fonction-etc-A]: A strictly increasing function $f:[0,1] \to [0,1]$ is always bijective.

TRUE FALSE

Question [TF-induction-suites-limites-B]: Let $f : \mathbb{R} \to \mathbb{R}$ be a bounded and increasing function, and for all $n \in \mathbb{N}$, let a_n be the real number defined by $a_n = f(n)$. Then $(a_n)_{n \geq 0}$ is a Cauchy sequence.

TRUE FALSE

Question [TF-integrale-A]: Let	$f\colon [-1,1]\to [-$	[1,1] be a continuous and bijective function,			
such that $f(0) = 0$. Then $\int_{-1}^{1} f(x) dx$	c=0.				
	TRUE	FALSE			
Question [TF-limite-continuite-be such that	B]: Let $f : \mathbb{R} - \lim_{x \to x_0 -} f(x) = f$	$ ightarrow \mathbb{R}$ be a monotone function, and let $x_0 \in \mathbb{R}$			
Then f is differentiable from the left at x_0 .					
	TRUE	FALSE			
then $\sum_{n=0}^{\infty} (-1)^n a_n$ converges.	TRUE	of positive real numbers. If $\sum_{n=0}^{\infty} a_n$ converges,			
Question [TF-serie-entiere-A]:	The radius of con	wergence of the power series $f(x) = \sum_{k=0}^{+\infty} (3x)^k$			
is 3.		<i>K</i> =0			
	TRUE	FALSE			