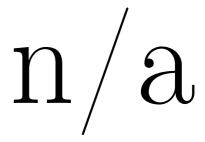


Lecturer: Z. Patakfalvi Analysis I - (n/a) 13th January 2020 3 hours



n/a

SCIPER: 999999

Do not turn the page before the start of the exam. This document is double-sided, has 16 pages, the last ones possibly blank. TOTAL: 31 questions. Do not unstaple.

- Place your student card on your table.
- The only papers you are allowed to use are the booklet of the exam and the scratch paper provided by the proctors.
- Using a **calculator** or any electronic device is not permitted during the exam.
- For the **multiple choice** questions, we give :
 - +3 points if your answer is correct,
 - 0 points if you give no answer or more than one,
 - -1 points if your answer is incorrect.
- For the **true/false** questions, we give :
 - +1 points if your answer is correct,
 - 0 points if you give no answer or more than one,
 - -1 points if your answer is incorrect.
- Use a black or dark blue ballpen and clearly erase with correction fluid if necessary.
- If a question is wrong, the teacher may decide to nullify it.

Respectez les consignes suivantes Read these guidelines Beachten Sie bitte die unten stehenden Richtlinien											
choisir une réponse select an answer Antwort auswählen			ne PAS choisir une réponse NOT select an answer NICHT Antwort auswählen						Corriger une réponse Correct an answer Antwort korrigieren		
X	\checkmark										
ce qu'il ne faut <u>PAS</u> faire what should <u>NOT</u> be done was man <u>NICHT</u> tun sollte											
						•					

First part: multiple choice questions

For each question, mark the box corresponding to the correct answer. Each question has exactly one correct answer.

Question 1: Set $I = \int_0^2 e^{(x^2)} dx$. Then,

I > 200.

Question 2 : Let $f \colon \mathbb{R} \to \mathbb{R}$ be the function defined by

$$f(x) = \begin{cases} x \sin(e^{\frac{1}{x}} - 1) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

Then.

f is continuous over \mathbb{R} , and it is differentiable from the right, but not from the left at x=0.

f is C^1 over \mathbb{R} , that is, it is differentiable and its derivative is continuous over \mathbb{R} .

f is differentiable over \mathbb{R} , but f' is not continuous over the entire \mathbb{R} .

f is continuous over \mathbb{R} , and it is differentiable from the left but not from the right at x=0.

Question 3: Define $a_n = (\sqrt{n+2} - \sqrt{n+1}) \sin(\frac{1}{n})$, for every $n \in \mathbb{N}^*$. Then,

 \square the series $\sum_{n=0}^{\infty} a_n$ is convergent, but it is not absolutely convergent.

 \square the series $\sum_{n=1}^{\infty} a_n$ is divergent.

 \square both the series $\sum_{n=1}^{\infty} a_n$ and the series $\sum_{n=1}^{\infty} (-1)^n a_n$ are convergent.

 \square the series $\sum_{n=0}^{\infty} (-1)^n a_n$ is divergent.

Question 4: Let R be the radius of convergence of the power series $f(x) = \sum_{n=1}^{\infty} \left(1 + \frac{1}{n^2}\right)^{(n^o)} x^n$.

If b=3, then R=e.

If b=4, then $R=e^2$.

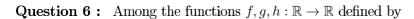
Question 5: Define the function $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = |x \cos(x)|$.

There exists $u \in \left]0, \frac{\pi}{4}\right[$ such that $f'(u) = \frac{\sqrt{2}}{2}$.

f is increasing on $\left[0, \frac{\pi}{2}\right]$.

There is a single local minimum of f on the entire \mathbb{R} .

There exists $u \in \left] -\frac{\pi}{8}, \frac{\pi}{8} \right[$ such that f'(u) = 0.



$$f(x) = \begin{cases} \sqrt{x} \sin(\frac{1}{x}) & \text{if } x > 0 \\ -\sqrt{-x} & \text{if } x \le 0 \end{cases}, \qquad g(x) = \begin{cases} x \sin(\frac{1}{x}) & \text{if } x > 0 \\ 0 & \text{if } x \le 0 \end{cases},$$

$$h(x) = \begin{cases} \sqrt{x} \operatorname{Arctg}\left(\frac{1}{x}\right) & \text{si } x > 0\\ x \operatorname{Log}(|x|) & \text{si } x < 0\\ 0 & \text{si } x = 0 \end{cases},$$

find those that are continuous at x = 0:

Question 7: Consider the integral $I = \int_{1}^{2} x \log(1+x) dx$. Then,

 $I = 2 \operatorname{Log}(3) - \frac{1}{2} \operatorname{Log}(2).$

 $I = \frac{1}{2} \operatorname{Log}(2) + \frac{1}{4}.$

 $I = 2 \operatorname{Log}(3) + \frac{1}{2} \operatorname{Log}(2).$

 $I = \frac{3}{2} \operatorname{Log}(3) - \frac{1}{4}.$

Question 8: Let $f: [1, +\infty[\to \mathbb{R} \text{ be the function defined by } f(x) = \sin(\operatorname{Arctg}(\sqrt{x}))$. Then the range of f is

- []0,1].
- [-1,1].
- $\left[\int \frac{\sqrt{2}}{2}, 1 \right]$.

Question 9: For which numbers $a, b \in \mathbb{R}$ is the function $f : \mathbb{R} \to \mathbb{R}$, defined by

$$f(x) = \begin{cases} (ax+1)(bx-1) & \text{if } x \ge 0, \\ \sin(a^2x) - b & \text{if } x < 0, \end{cases}$$

differentiable at x = 0?

 $a = \frac{1 \pm \sqrt{5}}{2}$ and b = -1

 $a = \pm 1$ and b = -1

 \Box $a = \pm 1$ and b = 1

Question 10: The imaginary part of $(-1 + i\sqrt{3})^5$ is

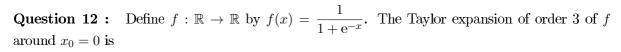
- $16\sqrt{3}$.
- $-16\sqrt{3}$.
- $32\sqrt{3}$.
- $32\sqrt{3} i$.

Question 11: The limit $\lim_{n\to\infty} \frac{\sqrt{n}}{\sqrt{5n+\sqrt{3n-\sqrt{2n}}}}$

- \square exists, and it is $\frac{1}{\sqrt{5+\sqrt{3-\sqrt{2}}}}$.
- \square exists, and it is $\frac{1}{\sqrt{5}}$.

 \square exists, and it is $\frac{1}{\sqrt{6}}$.

does not exist.



$$f(x) = \frac{1}{2} + \frac{x}{4} + \frac{x^3}{48} + x^3 \varepsilon(x).$$

$$f(x) = \frac{1}{2} + \frac{x}{4} - \frac{x^3}{48} + x^3 \varepsilon(x).$$

$$f(x) = \frac{1}{2} + \frac{x}{4} - \frac{x^3}{24} + x^3 \varepsilon(x).$$

Question 13: Let $(a_n)_{n\geq 1}$ be the sequence defined as follows: for all $n\geq 1$,

$$a_n = \sin\left(\frac{\pi}{4} + n\frac{\pi}{2}\right) + \cos\left(\frac{\pi}{4} + n\frac{\pi}{2}\right).$$

Then,

$$\lim \sup_{n \to \infty} a_n = \sqrt{2} \quad \text{and} \quad \liminf_{n \to \infty} a_n = 0.$$

Question 14: The series $\sum_{n=1}^{\infty} \frac{1}{\sqrt[5]{n^{\frac{2}{\alpha}}(n^{2\alpha}+1)}}$ converges if

$$\frac{1}{2} < \alpha < 1$$
.

Question 15: Set $x_0 \in \mathbb{R}$, and let $x_{n+1} = x_n - \frac{1}{3^n}$ for every $n \in \mathbb{N}$. Then

- for all $x_0 \in \mathbb{R}$, the sequence $(x_n)_{n\geq 0}$ converges to x_0 .
- for all $x_0 \in \mathbb{R}$, the sequence $(x_n)_{n \geq 0}$ converges to 0.
- for all $x_0 \in \mathbb{R}$, the sequence $(x_n)_{n\geq 0}$ converges to $x_0 \frac{3}{2}$.
- \rfloor for all $x_0 \in \mathbb{R}$, the sequence $(x_n)_{n \geq 0}$ is divergent.

Question 16: The improper integral $\int_{1}^{\infty} \frac{x^{3/2} + 3}{x^3} dx$

diverges.

 \square converges, and its value is $-\frac{7}{2}$.

converges, and its value is $\frac{8}{3}$.

 \square converges, and its value is $\frac{7}{2}$.

Question 17: Set $A = \left\{ x \in \mathbb{R}_+^* \setminus \{1\} : \frac{1}{\text{Log}(x)} < 1 \right\}$. Then,

 \square A is not bounded from below.

$$\square$$
 Sup $A = e$.

$$\square$$
 Inf $A = e$.

Question 18: Define $f: \mathbb{R}^* \to \mathbb{R}$ by $f(x) = \frac{1}{2} \left(x + \frac{2}{x} \right)$, and define the sequence $(x_n)_{n \geq 1}$ by setting $x_{n+1} = f(x_n)$ for all $n \in \mathbb{N}$, and for some fixed $x_0 \in \mathbb{R}^*$.

- \square If $x_0 = -2$, then the sequence $(x_n)_{n \ge 1}$ converges to $-\sqrt{2}$.
- \prod If $x_0 = \frac{1}{\sqrt{2}}$, then the sequence $(x_n)_{n \geq 1}$ converges to $-\sqrt{2}$.
- \square If $x_0 = 1$, then the sequence $(x_n)_{n \ge 1}$ converges to $-\sqrt{2}$.
- There does not exist any $x_0 \in \mathbb{R}^*$ for which the sequence $(x_n)_{n \geq 1}$ converges to $-\sqrt{2}$.

Second part: true/false questions

For each question, mark the box (without erasing) TRUE if the statement is **always true** and the box FALSE if it is **not always true** (i.e., it is sometimes false).

Question 19: Let $f: \mathbb{R} \to \mathbb{R}$ be the function defined by

$$f(x) = \begin{cases} x^2 & \text{if } x \in \mathbb{Q} \\ x & \text{if } x \notin \mathbb{Q} \end{cases}.$$

Then f is continuous at exactly two points.

TRUE FALSE

Question 20: A strictly increasing function $f:[0,1] \to [0,1]$ is always bijective.

TRUE FALSE

Question 21: The radius of convergence of the power series $f(x) = \sum_{k=0}^{+\infty} (3x)^k$ is 3.

TRUE FALSE

Question 22: Let $f: \mathbb{R} \to \mathbb{R}$ be a monotone function, and let $x_0 \in \mathbb{R}$ be such that

$$\lim_{x \to x_0 -} f(x) = f(x_0).$$

Then f is differentiable from the left at x_0 .

TRUE FALSE

Question 23: Let $(a_n)_{n\geq 0}$ be a sequence of positive real numbers. If $\sum_{n=0}^{\infty} a_n$ converges, then

$$\sum_{n=0}^{\infty} (-1)^n a_n \text{ converges.}$$

TRUE FALSE

Question 24: Consider a function $f: \mathbb{R} \to \mathbb{R}$. If f is differentiable at x_0 , then the function $g: \mathbb{R} \to \mathbb{R}$ defined by $g(x) = \sin(f(x))$ is also differentiable at x_0 .

TRUE FALSE

Question 25: Let $f: \mathbb{R} \to \mathbb{R}$ be a bounded and increasing function, and for all $n \in \mathbb{N}$, let a_n be the real number defined by $a_n = f(n)$. Then $(a_n)_{n \geq 0}$ is a Cauchy sequence.						
	TRUE	☐ FALSE				
Question 26: For all $\omega \in \mathbb{C}$ that $\mathrm{Im}(\omega z) = 0$.	$t, \omega \neq 0$, there exists	st infinitely many complex numbers $z \in \mathbb{C}$ such				
	TRUE	☐ FALSE				
Question 27: Let $f: [-1, 1]$ - Then $\int_{-1}^{1} f(x) dx = 0$.	$\rightarrow [-1, 1]$ be a cont	inuous and bijective function, such that $f(0) = 0$.				
	TRUE	☐ FALSE				
and it is continuous. Assume th	at the Taylor exp	unction, that is, the third derivative of f exists ansion of order 2 of f around $x_0 = 0$ is given by pansion of the function $(f(x))^2$ around $x_0 = 0$ is FALSE				