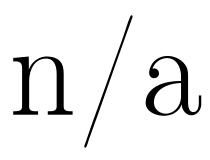


Teach. Z. Patakfalvi - Analysis I - (n/a)

January 14, 2019 - duration: 3 hours



SCIPER: 999999

Do not turn the page before the start of the exam. This document is double-sided, has 12 pages, the last ones possibly blank. Do not unstaple.

- Place your student card on your table.
- No other paper materials are allowed to be used during the exam.
- Using a **calculator** or any electronic device is not permitted during the exam.
- For the **multiple choice** questions, we give
 - +3 points if your answer is correct,
 - 0 points if you give no answer or more than one,
 - -1 points if your answer is incorrect.
- For the **true/false** questions, we give
 - +1 points if your answer is correct,
 - 0 points if you give no answer or more than one,
 - -1 points if your answer is incorrect.
- Use a black or dark blue ballpen and clearly erase with correction fluid if necessary.
- If a question is wrong, the teacher may decide to nullify it.

Respectez les consignes suivantes Observe this guidelines Beachten Sie bitte die unten stehenden Richtlinien										
choisir une réponse select an answer Antwort auswählen			ne PAS choisir une réponse NOT select an answer NICHT Antwort auswählen					Corriger une réponse Correct an answer Antwort korrigieren		
X	\checkmark									
ce qu'il ne faut <u>PAS</u> faire what should <u>NOT</u> be done was man <u>NICHT</u> tun sollte										
					•					

First part: multiple choice questions

For each question, mark the box corresponding to the correct answer. Each question has exactly one correct answer.

Question 1: The improper integral $I = \int_{0+}^{\frac{\pi}{6}} \frac{\cos(x)}{\sqrt{\sin(x)}} dx$

- converges, and its value is $I = \sqrt{2}$
- diverges, because $\lim_{\varepsilon \to 0^+} \text{Log}(\sqrt{\sin(\varepsilon)}) = -\infty$
- diverges, because $\frac{\cos(x)}{\sqrt{\sin(x)}}$ is not defined at x = 0
- converges, and its value is $I = \frac{1}{2} \operatorname{Log}(\frac{1}{2})$

Question 2: Let $f: \mathbb{R} \to \mathbb{R}$ be the function defined by $f(x) = x |\cos(x)|$. Then:

- $\int f$ is not twice differentiable at x=0
- f is infinitely many times differentiable on \mathbb{R}
- f is continuous on \mathbb{R} , but not differentiable at x=0
- f is differentiable at x=0, but not at $x=\frac{\pi}{2}+k\pi$, for every $k\in\mathbb{Z}$

Question 3: Let $f: \mathbb{R} \to \mathbb{R}$ be the function defined by $f(x) = e^{\frac{x^4}{4} + \frac{x^2}{2}}$. Then:

- f has a single local maximum
- f has a single local minimum

f is strictly increasing

 $\int f$ is strictly decreasing

Question 4: Set $\lambda := -\frac{1}{6}$. Find the convergent one out of the following series:

Question 5: Let $(a_n)_{n\geq 0}$ be the sequence defined by $a_0=\frac{3}{2}$, and $a_{n+1}=\frac{1}{2}+\frac{1}{2}\sqrt{8a_n-7}$, for every $n \geq 0$. Then:

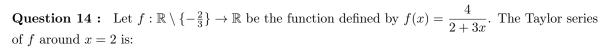
the sequence is divergent

Question 6: Let $m \in \mathbb{R}$ be a real number, an let $f: \mathbb{R} \to \mathbb{R}$ be the function defined by

$$f(x) = \begin{cases} \frac{\sin^2(x)}{\log(1+2x^2)} & \text{if } x < 0, \\ m & \text{if } x = 0, \\ \frac{x+1}{x^2+3x+1} & \text{if } x > 0. \end{cases}$$

- If m = 1, then f is continuous at x = 0.
- If $m = \frac{1}{3}$, then f is right continuous but not left continuous at x = 0.
- If $m = \frac{1}{2}$, then f is continuous at x = 0.
- If $m = \frac{1}{2}$, then f is left continuous but not right continuous at x = 0.

Question 7: Consider the integral $I = \int_2^3 \frac{x^2 - 2}{x^2 + 2}$	$\frac{x+1}{x+1} dx$. Then:							
$ I = \frac{5}{3} - 4\log(\frac{3}{2}) $								
$ I = Log(2) + \frac{1}{2} $	$ I = \frac{4}{3} - 4\operatorname{Log}(\frac{4}{3}) $							
Question 8: Let $f:]-3, 2[\rightarrow \mathbb{R}$ be the function $x \in]-3, 2[$ and every $y \in]-3, 2[$ such that $x \neq y$ we	defined by $f(x) = x^2 + 4x - 1$. Then for every e have:							
$ -4 \le \frac{f(x) - f(y)}{x - y} \le 6 $								
Question 9: Let $p \in \mathbb{R}$ be a real number, and let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by								
$f(x) = \begin{cases} x ^p \log \\ 0 \end{cases}$	$ x , x \neq 0,$ $x = 0.$							
If $p = \frac{6}{5}$, then f is differentiable at $x = 0$. If $p = \frac{3}{2}$, then f is not differentiable at $x = 0$. If $p = \frac{1}{2}$, then f is not continuous at $x = 0$. If $p = \frac{2}{3}$, then f is right continuous, but not left continuous at $x = 0$.								
Question 10: Let $S \subseteq \mathbb{C}$ be the set of solutions of the equation $\overline{z}^2 = z^2$ among the complex numbers. Then:								
Question 11: Let s be a real number, and let $(b_n)_{n\geq 1}$ be the sequence defined by $b_n=\frac{1}{n^s}$ if n is								
even, and $b_n = \frac{1}{n^{2s}}$ if n is odd. Then the series $\sum_{n=1}^{\infty} b_n$ converges if and only if								
Question 12: The Taylor expansion of order 4 around 0 of the function $f(x) = \frac{1}{1 - \sin(x)}$ is								
$ 1 + x + x^2 + \frac{5}{6}x^3 + \frac{2}{3}x^4 $	$1 + x + x^2 + x^3 + x^4$							
$ 1 + x + 2x^2 + 3x^3 + 4x^4 $								
Question 13: Let $(x_n)_{n\geq 1}$ be the sequence define is odd. Then:	ed by $x_n = \sqrt[n]{7}$ if n is even and by $x_n = \frac{1}{n^7}$ if n							
$ \lim_{n \to \infty} \limsup_{n \to \infty} x_n = \liminf_{n \to \infty} x_n = 1 $								
$ \lim_{n \to \infty} \sup_{n \to \infty} x_n = \lim_{n \to \infty} \inf_{n \to \infty} x_n = 0 $	$ \lim_{n \to \infty} \sup x_n = 0, \text{ and } \lim_{n \to \infty} \inf x_n = 1 $							



Question 15: Let $(u_n)_{n\geq 0}$ be the sequence defined by $u_0=0$, and $u_{n+1}=\frac{1+2u_n}{2+u_n}$, for every $n \ge 0$. Then:

 $(u_n)_{n>0}$ is decreasing

 $0 < u_n < 1$ for every $n \in \mathbb{N}^*$

Question 16: Consider the integral $I = \int_{1}^{3} \frac{1}{\sqrt{x}(1+x)} dx$. Then:

 $I = \sqrt{3} - 1 + \operatorname{Log}(2)$

 $I = \frac{1}{2} \left(\operatorname{Arctg}(3) - \frac{\pi}{4} \right)$

 $I = 2(\sqrt{3} - 1) + \operatorname{Log}(2)$

 $I = 2(\operatorname{Arctg}(\sqrt{3}) - \frac{\pi}{4})$

Question 17: Let A be the subset of \mathbb{R} defined by $A = \left\{ x > 0 : \cos\left(\frac{1}{x}\right) > 0 \right\}$. Then

- \prod Inf A=0

Question 18: Let $(x_n)_{n\geq 1}$ be the sequence defined by $x_n=\frac{2^{2n}}{(7n)!}$. As $n\to\infty$, this sequence

converges to 0

diverges

converges to $\frac{4}{7}$

 \square converges to $\frac{\text{Log}(2)}{7}$

Second part: true/false questions

For each question, mark the box (without erasing) TRUE if the statement is **always true** and the box FALSE if it is **not always true** (i.e., it is sometimes false).

Question 19: Let $f:]-1,1[\to \mathbb{R}$ be a C^5 function, such that its Taylor expansion of order 4 around x=0 is

$$f(x) = 1 + x - x^2 + x^3 - x^4 + x^4 \varepsilon(x),$$

where $\lim_{x\to 0} \varepsilon(x) = 0$. Then $f'(0) + 3f^{(2)}(0) + f^{(3)}(0) = 1$.

TRUE FALSE

Question 20: Let $(x_n)_{n\geq 0}$ be the sequence defined by $x_0=2$, and $x_n=x_{n-1}-\frac{1}{n}$, for every $n\geq 1$. Then $(x_n)_{n\geq 0}$ is convergent.

TRUE FALSE

Question 21: The power series $\sum_{k=100}^{\infty} \frac{x^k}{k!}$ converges for every $x \in \mathbb{R}$.

TRUE FALSE

Question 22: Let $f: [-2,20] \to [0,1]$ be a continuous function. Then there is an $x \in [0,1]$ such that f(x) = x.

TRUE FALSE

Question 23: The series $\sum_{n=1}^{\infty} \sin\left(\frac{1}{n^2}\right)$ converges.

TRUE FALSE

Question 24: Let $f: \mathbb{R} \to \mathbb{R}$ be a C^1 function, such that there is exactly one solution of the equation f'(x) = 0. Then the equation f(x) = 1 has at most two distinct real solutions.

TRUE FALSE

Question 25: Let $A \subset \mathbb{R}$ be a bounded set, and let $B := \{x \in \mathbb{R} : x \text{ is an upper bound of } A\}$. Then $\text{Inf } B \in B$.

TRUE FALSE

