


Ens: Zsolt Patakfalvi - Analysis I - (n/a)

SCIPER: 999999

Do not turn the page before the start of the exam. This document is double-sided, has 4 pages, the last ones possibly blank. Do not unstaple.

- Place your student card on your table.
- No other paper materials are allowed to be used during the exam.
- Using a **calculator** or any electronic device is not permitted during the exam.
- For the **multiple choice** questions, we give
 - +3 points if your answer is correct,
 - 0 points if you give no answer or more than one,
 - -1 points if your answer is incorrect.
- For the $\mathbf{true}/\mathbf{false}$ questions, we give
 - +1 points if your answer is correct,
 - 0 points if you give no answer or more than one,
 - -1 points if your answer is incorrect.
- Use a black or dark blue ballpen and clearly erase with correction fluid if necessary.
- If a question is wrong, the teacher may decide to nullify it.

Respectez les consignes suivantes Observe this guidelines Beachten Sie bitte die unten stehenden Richtlinien										
choisir une rép Antw	onse sele vort auswäl		ne PAS choisir une réponse NOT select an answer NICHT Antwort auswählen					Corriger une réponse Correct an answer Antwort korrigieren		
X	\checkmark							[.		
ce qu'il ne faut <u>PAS</u> faire what should <u>NOT</u> be done was man <u>NICHT</u> tun sollte										
					•					

First part: multiple choice questions

For each question, mark the box corresponding to the correct answer. Each question has **exactly one** correct answer.

Question 1: Let $(a_k)_{k\geq 0}$ be a sequence of real numbers and $s_n = \sum_{k=0}^n a_k$, $n \geq 0$ be the sequence of its partial sums. If $\lim_{n \to +\infty} s_n = 1$, then

$$\lim_{n \to +\infty} a_n = 1 \qquad \qquad \lim_{n \to +\infty} s_{2n} < 1$$

$$\lim_{n \to +\infty} (s_{2n} - 2s_n) = 0 \qquad \qquad \lim_{n \to +\infty} (s_{2n} - s_n) = 0$$

Question 2: Let E be the subset of \mathbb{R} defined by

$$E = \left\{ \sin\left(\frac{\pi n}{4}\right) - \sin\left(\frac{\pi}{4n}\right) : n \in \mathbb{N} \setminus \{0\} \right\}.$$

Then

Question 3: Let $(x_n)_{n\geq 0}$ be the sequence defined by $x_n = \frac{\sin(n\frac{\pi}{2})}{3+\sin(n\frac{\pi}{2})}$. Then

Question 4: Let z be the complex number defined by $z=\mathrm{e}^{\mathrm{i}}+\mathrm{e}^{\mathrm{i}/3}.$ Then

$$|z| = \sqrt{2 + 2\left(e^{i/3} + e^{-i/3}\right)}$$

$$|z| = \sqrt{2 + 2\cos(\frac{2}{3})}$$

$$|z| = \sqrt{1 + \left(e^{2i/3} + e^{-2i/3}\right)}$$

Question 5:

Let S be the series with parameter $c \in \mathbb{R}$, defined by

$$S = \sum_{n=1}^{\infty} \frac{n!}{n^{cn}} .$$

Then

$$\square$$
 S converges if and only if $c>3$ \square S converges if and only if $c\geq 1$ \square S converges if and only if $c\geq 0$ \square S converges if and only if $c\geq 0$

Question 6: Consider a function $g: \mathbb{R} \to \mathbb{R}$ and the sequence of real numbers $(a_n)_{n\geq 0}$ defined recursively by $a_0=1$ and, for $n\geq 1$, $a_n=g(a_{n-1})$. Then the sequence $(a_n)_{n\geq 0}$ converges when g is defined by

Question 7: Let $(a_n)_{n\geq 0}$ be an unbounded sequence of real numbers. Then \square for all M > 0, $|a_n| > M$ holds for all $n \ge 0$ \square there exists n such that $a_n = +\infty$ or $a_n = -\infty$ \square for all M > 0 there exists n such that $|a_n| \ge M$ \square either $\lim_{n\to\infty} a_n = +\infty$, or $\lim_{n\to\infty} a_n = -\infty$ Second part: true/false questions For each question, mark the box (without erasing) TRUE if the statement is always true and the box FALSE if it is not always true (i.e., it is sometimes false). Question 8: Let $(a_n)_{n\geq 0}$ be a sequence of real numbers such that the sequence $(b_n)_{n\geq 0}$ defined by $b_n = \cos(a_n)$ converges. Then the sequence $(a_n)_{n\geq 0}$ converges. TRUE FALSE Question 9: The series $\sum_{n=0}^{\infty} \left(\frac{x^2-1}{x^2+1}\right)^n$ converges for all $x \in \mathbb{R}$. TRUE FALSE Question 10: Let $(x_n)_{n\geq 1}$ be defined by $x_n=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{n}$, and let $f:\mathbb{R}\to\mathbb{R}$ be defined by $f(x)=\frac{x^2}{x^2+1}$. Then $\lim_{n\to\infty}f(x_n)=1$. TRUE FALSE Question 11: Let A be a bounded subset of \mathbb{R} , and $c = \sup A$. Then for all $\epsilon > 0$ there exists $x \in A$ such that $x + \epsilon \ge c$. TRUE FALSE