Duration: 60 minutes

Analysis I Midterm test Autumn 2017

- For the **multiple choice** questions, we give
 - +3 points if your answer is correct,
 - 0 points if you give no answer or more than one,
 - -1 points if your answer is incorrect.
- For the **true/false** questions, we give
 - +1 points if your answer is correct,
 - 0 points if you give no answer or more than one,
 - -1 points if your answer is incorrect.

First part: multiple choice questions

For each question, cross the box corresponding to the correct answer. Each question has **exactly one** correct answer.

Question 1: The set of numbers $z \in \mathbb{C}$ such that $z^3 = \frac{(3+3i)^3}{2i+2}$ is

- $\left[\left[-3\,\mathrm{i}\,,\ \tfrac{3}{2} \left(1 + \sqrt{3}\,\mathrm{i}\,\right),\ -\tfrac{3}{2} \left(1 \sqrt{3}\,\mathrm{i}\,\right) \right] \right]$
- $\left[3i, \frac{3}{2} \left(\sqrt{3} i \right), -\frac{3}{2} \left(\sqrt{3} + i \right) \right]$
- $\left[\ \, \left\{ 3\,\mathrm{i}\,,\ \tfrac{3}{2} \left(1 \sqrt{3}\,\mathrm{i}\,\right),\ -\tfrac{3}{2} \left(1 + \sqrt{3}\,\mathrm{i}\,\right) \right\} \right.$

Question 2: Let (a_n) be the sequence of real numbers defined recursively by

 $a_0=1 \qquad \text{and} \qquad a_{n+1}=2a_n+1 \qquad \text{for all } n\in \mathbb{N}.$

Then

Question 3: Let (a_n) be the sequence of real numbers defined by

$$a_n = \frac{\sqrt[3n]{4} - 6\sqrt[3n]{2} + 9}{\sqrt[2n]{9} - 4\sqrt[2n]{3} + 4},$$
 for all $n \in \mathbb{N} \setminus \{0\}$.

Then

- the sequence diverges
- \Box the sequence converges and $\lim_{n\to+\infty} a_n = \frac{9}{4}$
- the sequence converges and $\lim_{n\to+\infty} a_n = 4$
- \Box the sequence converges and $\lim_{n\to+\infty} a_n = \frac{4}{9}$

Question 4: Let (a_n) be the sequence of real numbers defined recursively by

$$a_0=1$$
 and $a_{n+1}=rac{a_n}{3}+rac{a_n^2}{3}$ for all $n\in\mathbb{N}.$

Then

- \Box the sequence converges and $\lim_{n\to +\infty} a_n = \frac{2}{3}$
- the sequence does not converge
- \Box the sequence converges and $\lim_{n\to+\infty} a_n = 2$
- the sequence converges and $\lim_{n\to+\infty} a_n = 0$

Question 5:	The series	$\sum_{n=1}^{+\infty} \left(1 - \frac{1}{n}\right)$	$\left(\frac{1}{n^2}\right)^{n^2}$
-------------	------------	---	------------------------------------

_										
	converges	to	a roal	number	e	such	that	e	/	3
	COHVEIGES	UU	arcar	number	0	Sucii	unat		_	J

diverges, but the alternating series
$$\sum_{n=1}^{+\infty} (-1)^n \left(1 - \frac{1}{n^2}\right)^{n^2}$$
 converges

diverges

$$\$$
 converges to a real number s such that $s \geq 3$

Question 6: Consider the series

$$\sum_{n=5}^{+\infty} (\cos(t\pi))^n.$$

with parameter $t \in \mathbb{R}$. Then

the series converges for all
$$t \notin \mathbb{Z}$$

$$\Box$$
 the series diverges $t \in \mathbb{R}$

the series converges for all
$$t \in \mathbb{R}$$

$$\Box$$
 the series converges for a finite number of values of t

Question 7: Let $p \in \mathbb{R}$ be any number.

The series
$$\sum_{n=0}^{+\infty} \frac{\text{Log}(n+2)}{(n+1)^p}$$
 diverges for all $p > 0$

The series
$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{(n+1)^p}$$
 converges absolutely for all $p > 0$

The series
$$\sum_{n=0}^{+\infty} \frac{1}{(n+1)^p (n+2)^p}$$
 converges for all $p > 0$

The series
$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{(n+1)^p}$$
 converges for all $p > 0$

Question 8: Let A be the non-empty bounded set $A = \left\{ x \in [0, 4\pi] : \cos(x) < \frac{1}{4} \right\}$ and let $b = \operatorname{Sup} A$. Then

$$\cos(b) = \frac{1}{4}$$

$$b < 2\pi$$

Second part: true/false questions

For each question, cross the box (without erasing) TRUE if the statement is **always true** and the box FALSE if it is **not always true** (i.e., it is sometimes false).

Question 9 : Let A and B be non-empty bounded subsets of $\mathbb R$ such that $A\subset B$ and $A\neq B$. Then Sup A< Sup B.

TRUE FALSE

Question 10 : Let (x_n) and (y_n) be two sequences of real numbers such that:

- (i) $x_n \leq y_n$ for all n even, and
- (ii) $x_n \ge y_n$ for all n odd.

If the sequence (x_n) converges, then the sequence (y_n) also converges.

TRUE FALSE

Question 11: Let (a_n) be a convergent sequence of real numbers. Then, for all $\varepsilon > 0$, there is a $k \in \mathbb{N}$, such that for all $n \geq k$ we have $|a_{n+1} - a_n| \leq \varepsilon$.

TRUE FALSE

Question 12: Let (x_n) and (y_n) be two bounded sequences of real numbers such that $x_n \leq y_n$ for all $n \in \mathbb{N}$. Then $\lim_{n \to +\infty} \sup x_n \leq \lim_{n \to +\infty} \sup y_n$.

TRUE FALSE

Question 13: If the series $\sum_{n=0}^{+\infty} a_n$ converges and (b_n) is a bounded sequence of real numbers,

then the series $\sum_{n=0}^{+\infty} a_n b_n$ converges.

TRUE FALSE

Question 14: If a function $f:]0, +\infty[\to \mathbb{R} \text{ satisfies } \lim_{x \to 0+} \frac{f(x)}{x} = 0$, then the series $\sum_{n=1}^{+\infty} f\left(\frac{1}{n^2}\right)$ converges.

TRUE FALSE