Duration: 67 minutes

Analysis I Midterm test Fall 2016

SCIPER: 12345678

Do not turn the page before the start of the exam. This document is double-sided, has 4 pages, the last ones possibly blank. Do not unstaple.

- Place your student card on your table.
- No other paper materials are allowed to be used during the exam.
- Using a **calculator** or any electronic device is not permitted during the exam.
- For the **multiple choice** questions, we give
 - +3 points if your answer is correct,
 - 0 points if you give no answer or more than one,
 - -1 points if your answer is incorrect.
- For the **true/false** questions, we give
 - +1 points if your answer is correct,
 - 0 points if you give no answer or more than one,
 - -1 points if your answer is incorrect.
- Use a black or dark blue ballpen and clearly erase with correction fluid if necessary.
- If a question is wrong, the teacher may decide to nullify it.
- Observe these guidelines when **recording your answers**:

First part: multiple choice questions

For each question, cross the box corresponding to the correct answer. Each question has **exactly one** correct answer.

Question 1: Let $\{x_n\}$ be the bounded sequence defined by $x_n = \frac{5+3^{n+1}}{1+(-3)^n}$.

Then

- \Box the sequence (x_n) converges
- $\lim_{n \to +\infty} \inf x_n = -3$

Question 2: The value of the limit $\lim_{n\to+\infty} \left(1-\frac{2}{n}+\frac{1}{n^2}\right)^n$ is

- \Box ϵ
- $\prod 1$
- e^{-}

Question 3: Let $E \subset \mathbb{R}$ be the subset defined by $E = \left\{ \left(1 + \frac{1}{n}\right)^{-1} : n \in \mathbb{N} \setminus \{0\} \right\}$.

Then

- Sup E = 1 and Inf $E = \frac{1}{2}$
- \square Sup $E \notin E$ and Inf $E \notin E$
- \square Sup E = 1 and Inf E = 0

Question 4: Let $n \in \mathbb{N} \setminus \{0\}$. Define the sum $S_n = \sum_{k=1}^{2n+1} (-1)^k k$.

Then we have

- $\int S_n = n$

Question 5: Let $d \in \mathbb{N} \setminus \{0\}$ and consider the series $\sum_{n=0}^{+\infty} \frac{(n!)^d}{(d \cdot n)!}$.

- The series converges only for d=2
- \Box The series converges for all d
- The series diverges for all d < 5
- The series converges for all $d \geq 2$

Corrected

Question 6: Let the function $f: \left[-\frac{1}{6}, \frac{1}{6}\right] \setminus \{0\} \to \mathbb{R}$ be defined by $f(x) = \frac{\sqrt{1+6x}-1}{\sin(2x)}$.

If it exists, let $g: \left[-\frac{1}{6}, \frac{1}{6}\right] \to \mathbb{R}$ be the extension of f by continuity at 0. Then

- $\int f$ does not admit an extension by continuity at 0
- \Box g exists and g(0) = 1
- \blacksquare g exists and $g(0) = \frac{3}{2}$
- g exists and $g(0) = \frac{1}{2}$

Question 7: For all $x \in \mathbb{R}$ and all $y \in \mathbb{R}$ such that $x + \mathrm{i} y \neq \mathrm{i}$, the complex number $z = x + \mathrm{i} y$ satisfies

- Re $\left(\frac{z^2}{i-z}\right) = \frac{2xy(1-y) x(x^2-y^2)}{x^2 + (1-y)^2}$

Question 8: The series $\sum_{n=0}^{+\infty} \frac{2^n}{3^n + n}$

- diverges and the series $\sum_{n=0}^{+\infty} (-1)^n \frac{2^n}{3^n + n}$ converges
- \square converges and $\sum_{n=0}^{+\infty} \frac{2^n}{3^n + n} > 6$
- \blacksquare converges and $\sum_{n=0}^{+\infty} \frac{2^n}{3^n + n} < 3$
- \square diverges and the series $\sum_{n=0}^{+\infty} (-1)^n \frac{2^n}{3^n + n}$ diverges

Corrected

Second part, true/false questions

For each question, cross the box (without erasing) TRUE if the statement is **always true** and the box FALSE if it is **not always true** (i.e., it is sometimes false).

Question 9: Let $x_0 \in \mathbb{R}$ and let (x_n) be the sequence defined recursively by $x_{n+1} = \frac{1}{4}x_n + 1$ for $n \in \mathbb{N}$. Then, for all choices of x_0 , the sequence (x_n) converges.

TRUE FALSE

Question 10: Let (a_n) be a sequence of real numbers $a_n \ge 0$ for all $n \in \mathbb{N}$. If the series $\sum_{n=0}^{+\infty} a_n$ converges, then the series $\sum_{n=0}^{+\infty} a_n^2$ converges.

TRUE FALSE

Question 11: Let $f: \mathbb{R} \to \mathbb{R}$ be a strictly increasing function and $g: \mathbb{R} \to \mathbb{R}$ be a strictly decreasing function. Then the composition $f \circ g: \mathbb{R} \to \mathbb{R}$ is strictly decreasing.

TRUE FALSE

Question 12: Let $f:[0,1] \to \mathbb{R}$ be a continuous function. Then the image of f is an open interval.

TRUE FALSE

Question 13: Let (a_n) and (b_n) be two sequences of positive real numbers, such that $0 < a_n \le b_n$ for all $n \in \mathbb{N}$. If the sequence (b_n) converges, then the sequence (a_n) converges.

TRUE FALSE

Question 14: The function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x + e^x$ is bijective.

TRUE FALSE