
Analysis I (English)
Roberto Svaldi and Stefano Filipazzi
Fall Semester 2021–2022

Analysis 1 - Exercise Set 9

Remember to check the correctness of your solutions whenever possible.

To solve the exercises you can use only the material you learned in the course.

1. Find the local and global maximum/minimum of the function f(x) = |x2−x|+|x|, by sketching
the graph of the function.

Solution:

We can rewrite the function as

f =


x2 if x ≥ 1

− x2 + 2x if 0 ≤ x < 1

x2 − 2x if x < 0

If we sketch the graph of this function we have
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So the function attains its global minimum at x = 0 and has no global maximum.



2. Compute the following limits if they exist.

(a) lim
x→1

x2−x
x2−2x+1

(b) lim
x→+∞

(
3
√
x+ 1− 3

√
x
)

(c) lim
x→0

(−1)[x]

sin(x)3 + 1
sin(x)2

Solution:

(a) We have
x2 − x

x2 − 2x+ 1
=

x(x− 1)

(x− 1)2
=

x

x− 1

So the limit from the left is −∞, and from the right is +∞. We conclude that the
limit does not exist.

(b) We use the formula a3 − b3 = (a− b)(a2 + ab+ b2) for a = 3
√
x+ 1 and b = 3

√
x

to obtain,

lim
x→+∞

(
3
√
x+ 1− 3

√
x
)
= lim

x→+∞

(
(x+ 1)

1
3 − x

1
3

)(
(x+ 1)

2
3 + (x+ 1)

1
3x

1
3 + x

2
3

)
(x+ 1)

2
3 + (x+ 1)

1
3x

1
3 + x

2
3

= lim
x→+∞

1

(x+ 1)
2
3 + (x+ 1)

1
3x

1
3 + x

2
3

= 0 .

(c) We can assume that x ∈] − 1, 1[. So [x] = 0 for all x ∈] − 1, 1[. We compute the
right and left limits.

lim
x→0+

(−1)[x]

sin(x)3
+

1

sin(x)2
= lim

x→0+

1

sin(x)2

(
(−1)[x]

sin(x)
+ 1

)
= lim

x→0+

1

sin(x)2

(
1

sin(x)
+ 1

)
= +∞

because lim
x→0+

sin(x) = 0 and 1
sin(x) ≥ 0 for x ∈]0, 1[.

lim
x→0−

(−1)[x]

sin(x)3
+

1

sin(x)2
= lim

x→0−

1

sin(x)2

(
(−1)[x]

sin(x)
+ 1

)
= lim

x→0−

1

sin(x)2

(
1

sin(x)
+ 1

)
= −∞

because 1
sin(x) ≤ 0 for x ∈]− 1, 0[. So the limit does not exist, as left limit and right

limit do not agree.

3. Consider the function

f(x) =
x(x− 1) tan(x− 1)

x3 − 3x+ 2
,

whose domain is R \ {−2, 1}.

(a) Study its continuity at x0 = 0.

(b) Find, if it exists, a continuous extension of the function f in x0 = 1, or otherwise show
that f cannot have a continuous extension at x0 = 1.

Solution:

Page 2



(a) Yes, the function is continuous at x0. We will use the theorems about composition,
product, ratio, etc., of continuous functions. The function x−1 is continuous every-
where, as it is a polynomial. Thus, since the function tan is continuous everywhere,
then so is the composition tan(x − 1). Now, x(x − 1) is continuous everywhere, as
it is a polynomial; then, as the product of two continuous functions is continuous,
then x(x− 1) tan(x− 1) is continuous everywhere.

Now, x3 − 3x+ 2 is continuous everywhere, as it is a polynomial. To conclude, we
will use the fact that the ratio of two continuous functions is continuous, as long as
the denominator is not 0. Thus, it suffices to check that x3− 3x+2 does not vanish
at 0; but this is the case, as its value at x0 = 0 is 2.

(b) If the limit lim
x→x0

f(x) exists in R then we can choose it as value a to extend f at

x0. We compute the limit of f at x0 = 1. We can write the denominator of f as
x3 − 3x+ 2 = (x− 1)2(x+ 2) so we get

lim
x→1

f(x) = lim
x→1

x(x− 1) tan(x− 1)

x3 − 3x+ 2
= lim

x→1

x(x− 1) tan(x− 1)

(x− 1)2(x+ 2)

= lim
x→1

(
x

x+ 2
· tan(x− 1)

x− 1

)
= lim

x→1

x

x+ 2
· lim
x→1

tan(x− 1)

x− 1

=
1

3
· lim
x→1

(
sin(x− 1)

(x− 1)
· 1

cos(x− 1)

)
=

1

3
· 1 =

1

3

(Attention: The decomposition of the product of the two limits in the second line
exists because both limits exist.)

So the continuous extension of f is

f̂1 : R \ {−2} −→ R, f̂1(x) =


x(x− 1) tan(x− 1)

x3 − 3x+ 2
, x ̸= 1,−2

1
3 , x = 1.

4. (a) Prove or disprove that a function is continuous if and only if it is uniformly continuous.

(b) Prove or disprove that f : R → R, f(x) = sin(x) is a uniformly continuous function.

(c) Show that the function f : ]0, b[→ R defined by f(x) = x2 is continuous and also uniformly
continuous for b < +∞. Show that f is not uniformly continuous when b = +∞.

Solution:

(a) This is not true. The function f : ]0,+∞[ 7→ R defined by f(x) = 1
x is continuous,

but not uniformly continuous.

(b) Let ε > 0. For x, y ∈ R, we have

| sin(x)−sin(y)| = 2

∣∣∣∣cos(x+ y

2

)∣∣∣∣·∣∣∣∣sin(x− y

2

)∣∣∣∣ ≤ 2

∣∣∣∣sin(x− y

2

)∣∣∣∣ ≤ 2

∣∣∣∣x− y

2

∣∣∣∣ = |x−y|.

So if |x − y| ≤ δ with δ = ε, then | sin(x) − sin(y)| ≤ ε. Thus sin(.) is uniformly
continuous.

(c) It is continuous because,

|f(x)− f(x0)| = |x2 − x2
0| = |x+ x0||x− x0| < 2b|x− x0|

Page 3



So it is enough to take δ = ϵ
2b .

It is uniformly continuous because,

|f(x)− f(y)| = |x2 − y2| = |x+ y||x− y| < 2b|x− y|

So it is enough to take δ = ϵ
2b .

We want to show that if the domain of f is (0,∞), then f is not uniformly continuous.
It means that we have to find an ε > 0 such that for any δ > 0 we can find
x0, y0 ∈ (0,∞) that satisfy |x0 − y0| < δ but |f(x0)− f(y0)| > ε. Let’s take ε = 1,
x0 = N some arbitrary integer and y0 = N + δ/2 for some arbitrary δ > 0. Then

|f(x0)− f(y0)| = |x2
0 − y20 | = |x0 − y0||x0 + y0| = |δ

2
||2N + δ/2|

Now if f is uniformly continuous then we require |f(x0) − f(y0)| < 1 and conse-
quently | δ2 ||2N + δ/2| < 1. But this is a contradiction because for a fixed δ we
can pick N to be arbitrary large so that the inequality is violated. So f cannot be
uniformly continuous.

5. Let I be an interval, f : I → R be a continuous function and f(I) the image of I by f . Say if
the following statement are true or false.

(a) f(I) is an interval (where here we also admit the degenerate case f(I) = [m,m] = {m}).
(b) If I is a bounded and closed interval, then f(I) is a bounded and closed interval (where

here we also admit the degenerate case f(I) = [m,m] = {m}).
(c) If I is open, then f(I) is an open interval.

(d) If I = [a, b[ with a, b ∈ R, a < b, then f attains its maximum and minimum in I. That
is, there exists m,M ∈ R(f) such that R(f) = [m,M ].

Solution:

(a) True. It is a consequence of the intermediate value theorem.

(b) True. It is a consequence of the intermediate value theorem.

(c) False. Take, for example, the function f : ] − 1, 1[ → R defined by f(x) = 1
−x2+1 .

Then I is open but f(I) = [1,+∞[ is not open.

(d) False. For example take the function f : [−1, 0[ → R defined by f(x) = 1
x sin

(
1
x

)
.

Then f neither have a minimum nor a maximum on I because for all n ∈ N∗, we

have −
(
2πn± π

2

)−1 ∈ I but

f

(
− 1

2πn+ π
2

)
= −

(
2πn+

π

2

)
sin
(
−
(
2πn+

π

2

))
=
(
2πn+

π

2

)
sin
(
2πn+

π

2

)
=
(
2πn+

π

2

)
sin
(π
2

)
= 2πn+

π

2
> n

and

f

(
− 1

2πn− π
2

)
= −

(
2πn− π

2

)
sin
(
−
(
2πn− π

2

))
=
(
2πn− π

2

)
sin
(
2πn− π

2

)
=
(
2πn− π

2

)
sin
(
−π

2

)
= −2πn+

π

2
< −n.
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6. Find, if it exists, continuous extension of the function f :]0, 1] → R given by f(x) = tan(
√
1+x−1)

x3/2

at x0 = 0, or otherwise show that f cannot have a continuous extension at x0. (Note: you
have to care just about the limit from the right, that is: x → 0+)

Solution:

We check if the limit of f exists as x → 0+. We have

lim
x→0+

tan(
√
1 + x− 1)

x3/2
= lim

x→0+

sin(
√
1+x−1)

cos(
√
1+x−1)

x3/2

= lim
x→0+

sin(
√
1 + x− 1)

x3/2
· 1

cos(
√
1 + x− 1)

= lim
x→0+

sin(
√
1 + x− 1)

x3/2
·
√
1 + x− 1√
1 + x− 1

· 1

cos(
√
1 + x− 1)

= lim
x→0+

√
1 + x− 1

x3/2
· sin(

√
1 + x− 1)√

1 + x− 1
· 1

cos(
√
1 + x− 1)

Note that the limit of the second fraction is finite due to the sandwich theorem (
√

1− y2 ≤
sin y
y ≤ 1) so limx→0

sin(
√
1+x−1)√

1+x−1
= 1. The limit of the last fraction is also finite as

limx→0
1

cos(
√
1+x−1)

= 1. For the limit of the first fraction we have:

lim
x→0+

√
1 + x− 1

x3/2
= lim

x→0+

√
1 + x− 1

x3/2
·
√
1 + x+ 1√
1 + x+ 1

= lim
x→0+

x

x3/2
· 1√

1 + x+ 1

= lim
x→0+

1

x1/2
· 1√

1 + x+ 1
= +∞

So the function tan(
√
1+x−1)

x3/2 does not have a limit in R as x → 0+, hence we cannot have
a continuous extension of this function.

7. Use the intermediate value theorem to show that the following equations have at least one
solution in R:

(a) ex−1 = x+ 1

(b) x2 − 1

x
= 1

Solution:

(a) To use the intermediate value theorem, we must define a continuous function starting
from the given equation. So, let f : R → R, f(x) = ex−1−x−1. Then f is continuous
in R since it is the combination of continuous functions and since e = 2.7182 . . ., we
have f(2) = e − 3 < 0 and f(3) = e2 − 4 > 0. By the intermediate value theorem,
there exist x0 ∈ [2, 3] such that f(x0) = 0.

Note also that this equation also admits another root. In fact, we have f(0) =
1
e − 1 < 0 and f(−1) = 1

e2 > 0 and by the intermediate value theorem there exists
x0 ∈ [−1, 0] such that f(x0) = 0.
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(b) To use the intermediate value theorem, we must define a continuous function starting
from the given equation. Since the given equation is not defined at x = 0, we need
to define the function f on ]−∞, 0[ and on ]0,∞[

If x < 0, we have x2− 1
x = x2+ 1

|x| > 1 because one of the two terms is always ≥ 1 so

the equation does not take any roots. So we define f : ]0,∞[→ R, f(x) = x2− 1
x −1.

This function is continuous (sum of continuous functions) and we have f(1) = −1 <
0 and f(2) > 0. By the intermediate value theorem, there exists x0 ∈ [1, 2] such
that f(x0) = 0.

8. State if the following functions are continuous and differentiable at x = 0.

(a) | sin(x)|
(b) |x3|

Solution:

(a) The function sin(x) is continuous and differentiable at x = 0. The function |.| is
continuous, so | sin(x)| is continuous, as it is the composition of two continuous
functions. If we look at the graph of | sin(x)| we see that there are two tangent lines
at x = 0. Hence, we expect that the function is not differentiable at x = 0. Let’s
compute the derivative, if it exists. We distinguish right and left limits

lim
x→0+

| sin(x)|
x

= lim
x→0+

sin(x)

x
= 1, lim

x→0−

| sin(x)|
x

= lim
x→0−

− sin(x)

x
= −1.

So the limit limx→0
| sin(x)|

x does not exist and | sin(x)| is not differentiable at x = 0.

(b) The function x3 is continuous and differentiable everywhere because it is a poly-
nomial. Since |.| is continuous, then |x3| is continuous everywhere because of com-
position of continuous functions. The derivative at x = 0, if it exists, is the limit

limx→0
|x3|
x . We distinguish the right and left limit.

lim
x→0+

|x3|
x

= lim
x→0+

x3

x
= 0, lim

x→0−

|x3|
x

= lim
x→0−

−x3

x
= 0.

Hence the limit exists and |x3| is differentiable at x = 0.

9. Check if the following functions are uniformly continuous

(a)
√
x with domain [0,+∞)

(b) x3 with domain [0, π]

(c) x3 with domain R

Solution:

(a)
√
x with domain [0,+∞) is uniformly continuous. We observe that since

√
x,

√
y ≥

0, we have |
√
x−√

y| ≤ |
√
x+

√
y|. Then

|
√
x−√

y|2 ≤ |
√
x−√

y| · |
√
x+

√
y| = |x− y|
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so we can take δ = ε2 in the definition of uniform continuity.

(b) x3 with domain [0, π] is uniformly continuous. We have

|y3 − x3| = |y − x| · |y2 + xy + x2| ≤ |y − x|3π2

So, for every ε > 0, if we choose δ < 1 and

δ <
ε

3π2

then if |x− y| < δ we get that
|y3 − x3| ≤ ε

(c) x3 with domain R is not uniformly continuous. To get a counterexample, take ε = 1.
For every δ > 0, take x ≥ 2

3δ2 and y = x+ δ, and we have

|y3 − x3| = |(x+ δ)3 − x3| = |2x2δ + 3xδ2| > 3xδ2 ≥ 2 > ε.

10. Let f and g be two continuous functions in [a, b], such that f(a) > g(a) and f(b) < g(b).
Show that there is c ∈]a, b[ such that f(c) = g(c). (Hint: use the function h = f − g and the
intermediate value theorem.)

Solution:

Define the function h(x) = f(x) − g(x). Since f and g are continuous functions in [a, b]
then h is also a continuous function on [a, b]. Also we have that h(a) = f(a) − g(a) > 0
since f(a) > g(a) and h(b) = f(b) − g(b) < 0 since f(b) < g(b). So h satisfies the
intermidiate value theorem so there exists a c ∈]a, b[ such that h(c) = 0. But h(c) = 0
implies that f(c)− g(c) = 0 meaning that f(c) = g(c).

11. Find the inverse of the following functions if they exist. Give the domain of both functions.

(a) f(x) =
√

(2x+ 4)3 − 7

(b) f(x) = 2x+3
3x+5

(c) f(x) = cos2 x−sin2 x
2 sin x cos x

Solution:

(a) To find the domain of f we notice that only positive values are accepted under the
square root sign:

(2x+ 4)3 − 7 ≥ 0 =⇒ x ≥ −2 +
3
√
7

2

So Df = [−2+
3√7
2 ,+∞[. We observe that f is injective because it is a composition

of injective functions:
√
x, x− 7, x3 and 2x+ 4 are all injective. Hence, an inverse

function exists. To find the inverse function we have:

y =
√
(2x+ 4)3 − 7 =⇒

3
√
y2 + 7

2
− 2 = x

So the inverse function is f−1(x) =
3√x2+7

2 − 2 and its domain is the entire real
numbers Df−1 = R.
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(b) To find the domain of f we notice that the denominator cannot become zero so
Df = R\{−5/3}. To find the inverse function we have:

y =
2x+ 3

3x+ 5
=⇒ 3yx+ 5y = 2x+ 3 =⇒ x(3y − 2) = 3− 5y =⇒ x =

3− 5y

3y − 2

where we assumed that x ̸= −5/3 and y ̸= 2/3. So x is uniquely determined by y,
in particular the function f is injective. So the inverse function exists and is given
by f−1(x) = 3−5x

3x−2 with the domain Df−1 = R\{2/3}.

(c) Note that 2 sinx cosx = sin(2x). Since the denominator cannot become zero, we
have that x ̸= kπ

2 where k ∈ Z. So the domain of f is R\{kπ
2 |k ∈ Z}. We have

f(x) =
cos2 x− sin2 x

2 sinx cosx
=

cos(2x)

sin(2x)
= cot(2x)

We observe that the function f is not injective because it is periodic. Hence the
inverse function does not exist. But g := f |]0,π2 [ :]0,

π
2 [→ R is injective with inverse

function g−1(x) = 1
2 arccotx. The domain of the inverse function is Dg−1 = R.

12. Let I be an interval, f : I → R be a continuous function and f(I) the image of I by f . Say if
the following statement are true or false.

(a) If I is bounded, then f(I) is bounded.

(b) If I = [a,∞[ with a ∈ R, then f attains its maximum and minimum in I.

(c) If f is strictly increasing and I is open, then f(I) is open.

Solution:

(a) False. Take for example the function f : ]0, 1[→ R defined by f(x) = 1
x . Then I is

bounded but f(I) = ]1,∞[ is not bounded.

(b) False. Take for example the function defined by f(x) = (x − a) sin(x − a). It
neither have a minimum nor a maximum on I because for all n ∈ N, we have
f
(
a+ π

2 + 2πn
)
= π

2 + 2πn > n and f
(
a− π

2 + 2πn
)
= π

2 − 2πn < −n.

(c) True. Let a, b ∈ R ∪ {±∞} with a < b such that I =]a, b[. Since the function is
strictly increasing, we have

A := lim
x→a+

f(x) = inf{f(x) : x ∈]a, b[} < sup{f(x) : x ∈]a, b[} = lim
x→b−

f(x) =: B

and A,B defined above belong to R ∪ {±∞}. In particular, f(I) ⊆ [A,B]. We
observe that if A ∈ f(I), then there exists x ∈]a, b[ such that f(x) = A. Since f is
strictly increasing, then x ≤ a, which is impossible because x > a. Hence A /∈ f(I).
Similarly we prove that B /∈ f(I). So we conclude that f(I) ⊆]A,B[. Now we
observe that by definition of limits we can find sequences (xn), (yn) contained in
]a, b[ such that (xn) converges to a and (yn) converges to b and xn ≤ yn for all
n ∈ N, so that (f(xn)) converges to A and (f(yn)) converges to B, and hence ]A,B[=
∪n∈N[f(xn), f(yn)]. By the intermediate value theorem, we have [f(xn), f(yn)] ⊆
f(I) for all n ∈ N. Then

]A,B[= ∪n∈N[f(xn), f(yn)] ⊆ f(I).

We proved that f(I) is the open interval ]A,B[.
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13. Find, if it exists, continuous extension of the function f :]2,∞[→ R give by f(x) =
√
x−

√
2+

√
x−2√

x2−4

at x0 = 2, or otherwise show that f cannot have a continuous extension at x0.

Solution:

We check if the limit limx→2+ f(x) exists. We have:

lim
x→2+

√
x−

√
2 +

√
x− 2√

x2 − 4
= lim

x→2+

( √
x−

√
2√

x− 2 ·
√
x+ 2

+

√
x− 2√

x− 2 ·
√
x+ 2

)

= lim
x→2+

( √
x−

√
2√

x− 2 ·
√
x+ 2

·
√
x− 2√
x− 2

·
√
x+

√
2

√
x+

√
2
+

1√
x+ 2

)

= lim
x→2+

(
(x− 2)

(x− 2) ·
√
x+ 2

·
√
x− 2

√
x+

√
2
+

1√
x+ 2

)
= 0 +

1

2
=

1

2

So we can extend the function f continuously to the interval [2,∞[. We define the new
function as:

f̂(x) =

{
f(x), x > 2

1/2, x = 2

which is continuous on [2,∞[.

14. The Bisection Algorithm: Using the intermediate value theorem and successive bisection
of the interval [0, 1], find an interval of the length L ≤ 1

8 that contains a solution of the
equation

x3 + x− 1 = 0.

Solution:

We search for a root x0 of the function f(x) = x3 + x− 1, i.e. x0 that satisfies f(x0) = 0.
The bisection algorithm is an iterative routine that successively restricts the interval that
contains the root x0.

The steps of the algorithm is given below, where L is the length of the interval where we
can find a root x0.

f(0) = −1 < 0 et f(1) = 1 > 0 =⇒ x0 ∈ ]0, 1[ , L = 1

f
(
1
2

)
= − 3

8 < 0 =⇒ x0 ∈
]
1
2 , 1
[
, L = 1

2

f
(
3
4

)
= 0.172 > 0 =⇒ x0 ∈

]
1
2 ,

3
4

[
, L = 1

4

f
(
5
8

)
= −0.130 < 0 =⇒ x0 ∈

]
5
8 ,

3
4

[
, L = 1

8

So x0 ∈
]
5
8 ,

3
4

[
= ]0.625, 0.75[ . The exact value of the root is x0 = 0.6823 . . . which is

indeed inside the obtained interval.
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15. Let the function f : [0,∞) → R be defined as

f(x) =


3x2 − 10x+ 3

x2 − 2x− 3
, x > 3

α , x = 3

βx− 4 , x < 3

Find α, β ∈ R such that the function is continuous at x = 3.

Solution:

For the function to be continuous we require limx→3− f = limx→3+ f = f(3)We first
compute the right limit at x = 3:

lim
x→3+

f(x) = lim
x→3+

3x2 − 10x+ 3

x2 − 2x− 3
= lim

x→3+

(x− 3)(3x− 1)

(x− 3)(x+ 1)
= 2

This implies that f(3) = α = 2. Also for the limit from the left we have:

lim
x→3−

f(x) = lim
x→3−

βx− 4 = 3β − 4

So 3β − 4 = 2, and we get β = 2.

16. Show that if f(x) is continuous on [−1, 1] and f(−1) = f(1), then there exists δ ∈ [0, 1] such
that f(δ) = f(δ − 1).

Solution:

First, consider the function g(x) = f(x− 1)− f(x), which is continuous on [0, 1]. Now we
know the following:

g(0) = f(−1)− f(0)

and
g(1) = f(0)− f(1)

But we know that f(−1) = f(1), so we can manipulate the second equation to get

g(1) = f(0)− f(1) = f(0)− f(−1) = −g(0)

• If g(0) = 0, then f(−1) = f(0) by the first equation. Hence, δ = 0 ∈ [0, 1].

• If g(0) > 0, then g(1) < 0 so by the intermediate value theorem there exists a
δ ∈ [0, 1] such that g(δ) = 0, meaning f(δ − 1) = f(δ).

• If g(0) < 0, then g(1) > 0 so by the intermediate value theorem there exists a
δ ∈ [0, 1] such that g(δ) = 0, meaning f(δ − 1) = f(δ).

17. Find, if it exists, continuous extension of the function f : [−π/4, 0[∪]0, π/4] → R given by
f(x) = 1−cos x

tan2 x at x0 = 0, or otherwise show that f cannot have a continuous extension at x0.

Solution:
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We check if the limit of f exists as x → 0. We have

lim
x→0

1− cosx

tan2 x
= lim

x→0

1− cosx
sin2 x
cos2 x

· 1 + cosx

1 + cosx

= lim
x→0

1− cos2 x

sin2 x
· cos2 x

1 + cosx

= lim
x→0

sin2 x

sin2 x
· cos2 x

1 + cosx

=
1

2

So we can extend the function f continuously to the interval [−π/4, π/4]. We define the
new function as:

f̂(x) =

{
f(x), x ̸= 0

1/2, x = 0

which is continuous on [−π/4, π/4].

18. Let us define the functions

cosh(x) =
ex + e−x

2
, sinh(x) =

ex − e−x

2
tanh(x) =

sinh(x)

cosh(x)
.

(a) Find domain and range for each of the 3 functions.

(b) Show that
cosh(x)2 − sinh(x)2 = 1.

(c) Find a suitable domain, for each of the 3 functions, over which the function is invertible.

(d) Compute

lim
x→+∞

cosh(x), lim
x→−∞

cosh(x),

lim
x→+∞

sinh(x), lim
x→−∞

sinh(x),

lim
x→+∞

tanh(x), lim
x→−∞

tanh(x).

Solution:

(a) As ex, e−x are defined over all of the real numbers, that is, Dom(ex) = Dom(e−x) =
R, then the same holds true for sinh(x), cosh(x). Moreover, cosh(x) > 0, ∀x ∈ R,
hence also Dom(tanh(x)) = R.
Let us examine the ranges. Let us notice that cosh(x) is even, while sinh(x) is odd,
and tanh(x) is odd, as well.
sinh(x) is strictly increasing on the interval [0,+∞[: in fact, taking s > t > 0, then
es > et (or, equivalently, es − et > 0), e−s < e−t (or, equivalently, e−s − e−t < 0),
so that

sinh(s) > sinh(t) ⇐⇒ es − e−s > et − e−t ⇐⇒ es − et > e−s − e−t.

But finally, e−s − e−t < 0, while es − et > 0, which show that the last inequality
above indeed holds.
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(b) By the definitions,

cosh(x)2 =
(ex + e−x)2

4
=

e2x + e−2x + 2exe−x

4
=

e2x + e−2x + 2ex−x

4
=

e2x + e−2x + 2

4
,

sinh(x)2 =
(ex − e−x)2

4
=

e2x + e−2x − 2exe−x

4
=

e2x + e−2x − 2ex−x

4
=

e2x+ e−2x − 2

4
,

=⇒ cosh(x)2 − sinh(x)2 =
e2x + e−2x + 2

4
− e2x + e−2x − 2

4
=

4

4
= 1.

(c) As cosh(x) =
√
1 + sinh(x)2 and over the positive real numbers the functions

f(x) = sinh(x), g(x) = 1 + x2, h(x) =
√
x are all strictly increasing and cosh(x) =

h(g(f(x))), then cosh(x) is strictly increasing on [0,+∞[. As cosh(x) is even, this
is the largest interval over which the function is injective (hence, invertible when we
take the arrival set to coincide with R(cosh(x)) = [1,+∞[, since cosh(0) = 1 and
limx→+∞ cosh(x) = +∞, and, again, cosh(x) is even).
As sinh(x) is odd, and strictly increasing on [0,+∞[, then it is strictly increasing
over all of R and it is therefore invertible on R and R(f) = R, since sinh(0) = 0 and
limx→+∞ sinh(x) = +∞, and, again, sinh(x) is odd.

(d) Let us note that cosh(x) ≥ |x|, ∀x ∈ R. Hence, the squeeze theorem implies im-
medaitely that

lim
x→+∞

cosh(x) = +∞ = lim
x→−∞

cosh(x).

Since limx→+∞ ex = +∞, then limx→+∞ e−x = 0 and

lim
x→+∞

sinh(x)

ex
= lim

x→+∞

ex−e−x

2

ex
= lim

x→+∞

ex

ex − e−x

ex

2
=

1

2
.

Hence sinh(x) ≥ 1
3e

x1 for x ≫ 0, hence

lim
x→+∞

sinh(x) = +∞.

As sinh(x) is odd, then
lim

x→−∞
sinh(x) = −∞.

Finally,

lim
x→+∞

tanh(x) = lim
x→+∞

sinh(x)

cosh(x)
= lim

x→+∞

ex − e−x

ex + e−x
=

lim
x→+∞

e−x · (ex − e−x)

e−x · (ex + e−x)
= lim

x→+∞

1− e−2x

1 + e−2x
= 1,

since limx→+∞ e−x = limx→+∞
1
ex = 0.

As tanh(x) is odd, then
lim

x→−∞
tanh(x) = −1.
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