Analysis T (English)
Roberto Svaldi and Stefano Filipazzi

Fall Semester 2021-2022

Analysis 1 - Exercise Set 9

Remember to check the correctness of your solutions whenever possible.
To solve the exercises you can use only the material you learned in the course.

1. Find the local and global maximum /minimum of the function f(z) = |22 —x|+|z|, by sketching
the graph of the function.

Solution:
We can rewrite the function as
2 if z>1
f=< —a2?42z if 0<z<1
z? — 2 if <0

If we sketch the graph of this function we have

35

25

0.5

2.5 3

So the function attains its global minimum at = 0 and has no global maximum.




2. Compute the following limits if they exist.

(c)

(=t
31:% sin(z)3

Solution:

(a) We have
2

-z  wx@-1)

2-2r+1 (r—1)2 x-1
So the limit from the left is —oo, and from the right is +00. We conclude that the
limit does not exist.

(b) We use the formula a® — b3 = (a — b)(a®? +ab+b?) for a = Yr+1 and b= Yz
to obtain,

lim (VaTT- 7) - lim ((x+1)%_x%) ((m+1)%+(w+1)§x%+$%>

et @00 (x+1)5 + (x4 1)523 + 23

1
= lim 2 T = =0.
e=+o0 (x4 1)8 + (x + 1)3x3 + 23

(c) We can assume that x €] —1,1[. So [¢] = 0 for all x €] — 1,1[. We compute the
right and left limits.

tm S, 1 L (CDM Y . S
im = lim = lim —— [ —— =
z—0+ sin(x)?  sin(z)?  z—ot sin(z)? \ sin(z) z—0+ sin(x)? \ sin(z)

because lim sin(z) = 0 and z=— > 0 for = €0, 1[.

0+ in(z)

lim )[z]+ ! ! ()™ +1 im —— (L 41
1m = 1m = 1m
z—0- sin(z)3  sin(x)?  «—o0- sin(z)? \ sin(z) z—0- sin(z)? \ sin(x)

because bm(w) < 0 for x €] —1,0][. So the limit does not exist, as left limit and right

limit do not agree.

3. Consider the function

z(x — 1) tan(z — 1)

fla) = 3 —3x + 2

b

whose domain is R\ {—2,1}.

(a) Study its continuity at zo = 0.

(b) Find, if it exists, a continuous extension of the function f in xg = 1, or otherwise show

that f cannot have a continuous extension at zg = 1.

Solution:

Page 2



4.

(a) Yes, the function is continuous at zp. We will use the theorems about composition,
product, ratio, etc., of continuous functions. The function x —1 is continuous every-
where, as it is a polynomial. Thus, since the function tan is continuous everywhere,
then so is the composition tan(x — 1). Now, x(z — 1) is continuous everywhere, as
it is a polynomial; then, as the product of two continuous functions is continuous,
then x(z — 1) tan(x — 1) is continuous everywhere.

Now, 23 — 32 + 2 is continuous everywhere, as it is a polynomial. To conclude, we
will use the fact that the ratio of two continuous functions is continuous, as long as
the denominator is not 0. Thus, it suffices to check that 23 — 3z + 2 does not vanish
at 0; but this is the case, as its value at zg = 0 is 2.

(b) If the limit lim f(z) exists in R then we can choose it as value a to extend f at

xg. We compute the limit of f at xp = 1. We can write the denominator of f as
23— 3z +2=(z—1)%(z +2) so we get

. . xz(z—1)tan(z —1) . x(zr—1)tan(z — 1)
}1—>ml f(@) —%1_)1111 a3 —3x+2 N 71~1—>ml (x —1)%(x+2)
t -1 t -1
= lim T an(z — 1) = lim —— . lim an(z — 1)
=1 \x+2 x—1 z—=1x+2 z—1 r—1

1 . (sin(z—1) 1 1 1
= —-lim . =—-1==
3 =1\ (z—1) cos(z—1) 3 3

(Attention: The decomposition of the product of the two limits in the second line
exists because both limits exist.)

So the continuous extension of f is

z(x —1)tan(x — 1)
fiiR\{-2} =R,  fi(x)= a3 —3r+2
% ) z =1

x#1,-2

(a) Prove or disprove that a function is continuous if and only if it is uniformly continuous.
(b) Prove or disprove that f: R — R, f(x) = sin(x) is a uniformly continuous function.

(c) Show that the function f: 0, b[— R defined by f(z) = 22 is continuous and also uniformly
continuous for b < +o00. Show that f is not uniformly continuous when b = +o0.

Solution:

(a) This is not true. The function f:]0,+oc[— R defined by f(z) = 1 is continuous,
but not uniformly continuous.

(b) Let € > 0. For z,y € R, we have

cos Ty -|sin r—y < 2 sin r—y <2
2 2 2

So if |z —y| < § with § = ¢, then |sin(z) — sin(y)| < e. Thus sin(.) is uniformly
continuous.

| sin(z)—sin(y)| = 2

w_y‘ = |zyl.
2

(c) Tt is continuous because,

[f(@) = f(ao)l = [o® = @] = o + @0l |z — zo| < 2b|ar — g
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So it is enough to take § = 5.

It is uniformly continuous because,
[f(z) = F)l = |2* = y?| = |z + yllz — y| < 2blz — y|

So it is enough to take § = 5.

We want to show that if the domain of f is (0, c0), then f is not uniformly continuous.

It means that we have to find an € > 0 such that for any 6 > 0 we can find

%o, Yo € (0,00) that satisfy |xg — yo| < ¢ but |f(zo) — f(yo)| > €. Let’s take e =1,
= N some arbitrary integer and yo = N + 6/2 for some arbitrary 6 > 0. Then

1)
|f(z0) — f(vo)| = |z — ¥3| = |zo — yol|zo + yo| = |§||2N+5/2|

Now if f is uniformly continuous then we require |f(zo) — f(y0)| < 1 and conse-
quently |$]|2N + 6/2| < 1. But this is a contradiction because for a fixed § we
can pick N to be arbitrary large so that the inequality is violated. So f cannot be
uniformly continuous.

5. Let I be an interval, f: I — R be a continuous function and f(I) the image of I by f. Say if
the following statement are true or false.

(a) f(I) is an interval (where here we also admit the degenerate case f(I) = [m, m] = {m}).

(b) If I is a bounded and closed interval, then f(I) is a bounded and closed interval (where
here we also admit the degenerate case f(I) = [m,m] = {m}).

(c) If I is open, then f(I) is an open interval.

(d) If I = [a,b] with a,b € R, a < b, then f attains its maximum and minimum in /. That
is, there exists m, M € R(f) such that R(f) = [m, M].

Solution:

(a) True. It is a consequence of the intermediate value theorem.
(b) True. It is a consequence of the intermediate value theorem.

(c) False. Take, for example, the function f:]—1,1[ — R defined by f(z) = —375-
Then I is open but f(I) = [1,400[ is not open.

(d) False. For example take the function f: [-1,0[ — R defined by f(z) = Lsin(1).
Then f neither have a minimum nor a maximum on I because for all n € N*| we

have —(27m:|: %),1 € I but

H(omirg) =~ (o T (- (2mn+ ) = (orn+ 3 sn(amn + )

(27Tn+2)sm(g) 21 +§>

and

(-gmmg) =~ (o= 3)sin(- (o= 3)) = (2mn - ) samn - )

2
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6. Find, if it exists, continuous extension of the function f :]0, 1] — R given by f(z) = tan(vita—1) w

at zop = 0, or otherwise show that f cannot have a continuous extension at xo. (Note: you
have to care just about the limit from the right, that is: x — 0T)

Solution:

We check if the limit of f exists as x — 0F. We have

sin(v/14+xz—1)
. tan(v 142 — 1) . cos(v/14+z—1)
hm —_— e = hm
z—0t x3/2 z—0+ x3/2

. sin(vI+z-1) 1

z—0+ z3/2 cos(v1+z—1)

fim sin(\/m—l).\/m—1. 1

20+ x3/2 Vi+tzr—1 cos(v1+z-1)
im \/m—l.sin(\/m—l). 1

0t x3/2 Vitz—1 cos(v/IT+x—1)

Note that the limit of the second fraction is finite due to the sandwich theorem (/1 — y2 <

% < 1) so lim,_o Sm(ﬁ m = 1. The limit of the last fraction is also finite as

lim, g W\/%—l) = 1. For the limit of the first fraction we have:

\/1+x—1_ Vit+z—1 Vi+ax+1

T RNy S
= lim . !
0+ x3/2 \/m +1
= lim Ly ! =400
o0t 22 Tyt 1
So the function m(;@ does not have a limit in R as  — 0", hence we cannot have

a continuous extension of this function.

7. Use the intermediate value theorem to show that the following equations have at least one
solution in R:

Solution:

(a) To use the intermediate value theorem, we must define a continuous function starting
from the given equation. So,let f: R — R, f(z) = ¢*~!—x—1. Then f is continuous
in R since it is the combination of continuous functions and since e = 2.7182. .., we
have f(2) = e —3 < 0 and f(3) = € — 4 > 0. By the intermediate value theorem,
there exist zg € [2, 3] such that f(z¢) = 0.

Note also that this equation also admits another root. In fact, we have f(0) =
1-1<o0and f(~1) = % > 0 and by the intermediate value theorem there exists
xo € [—1,0] such that f(xg) = 0.
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(b) To use the intermediate value theorem, we must define a continuous function starting
from the given equation. Since the given equation is not defined at = = 0, we need
to define the function f on | — 00,0[ and on ]0, 0]

1

If x < 0, we have 2 — T = 24 |71\ > 1 because one of the two terms is always > 1 so

; S S . _ 2 1
the equation does not take any roots. So we define f: ]0,00[— R, f(z) = 2% - —1.

This function is continuous (sum of continuous functions) and we have f(1) = -1 <
0 and f(2) > 0. By the intermediate value theorem, there exists o € [1,2] such
that f(zo) =0.

8. State if the following functions are continuous and differentiable at = = 0.

(a) |sin(z)|
(b) |°|

Solution:

(a) The function sin(x) is continuous and differentiable at = 0. The function |.| is
continuous, so |sin(x)| is continuous, as it is the composition of two continuous
functions. If we look at the graph of |sin(x)| we see that there are two tangent lines
at x = 0. Hence, we expect that the function is not differentiable at z = 0. Let’s
compute the derivative, if it exists. We distinguish right and left limits

lim | sin(z)] — lim sin(x) _1 lim | sin(z)| ~ lim — sin(x) _
z—0+t x z—0+t T z—0~ x z—0~ T
| sin

So the limit lim,_,o %ﬂ does not exist and |sin(z)| is not differentiable at x = 0.

(b) The function 2? is continuous and differentiable everywhere because it is a poly-
nomial. Since |.| is continuous, then |z3| is continuous everywhere because of com-
position of continuous functions. The derivative at = = 0, if it exists, is the limit

BN
xT

lim,_,o =-*. We distinguish the right and left limit.

lim — = lim — =0, lim — = lim — =0.
z—0t T z—0t T z—0- X z—0- T

|3| 3 ‘3 3

Hence the limit exists and |23| is differentiable at = = 0.

9. Check if the following functions are uniformly continuous
(a) v/ with domain [0, +00)
(b) 23 with domain [0, 7]

(c) 2% with domain R

Solution:

(a) vz with domain [0, 4-00) is uniformly continuous. We observe that since v/z, /y >

0, we have |\/z — \/y| < |v/z + \/y|. Then
Vz =yl < Vo =yl - Ve + Vyl = |z —yl
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so we can take § = €2 in the definition of uniform continuity.

(b) 23 with domain [0, 7] is uniformly continuous. We have

3|:

Iy — 2% = |y — 2| - [y* + 2y + 2?| < |y — |37

So, for every € > 0, if we choose § < 1 and

g

0< —
32

then if |z — y| < § we get that
ly* —a®| <e

(c) 2 with domain R is not uniformly continuous. To get a counterexample, take e = 1.
For every § > 0, take = > % and y = = + §, and we have

ly? — 2% = |(z 4+ 6)® — 23| = 2225 + 326%| > 326* > 2 > &

10. Let f and g be two continuous functions in [a,b], such that f(a) > g(a) and f(b) < g(b).
Show that there is ¢ €]a, b] such that f(c) = g(c). (Hint: use the function h = f — g and the
intermediate value theorem.)

Solution:

Define the function h(z) = f(z) — g(z). Since f and g are continuous functions in [a, ]
then h is also a continuous function on [a,b]. Also we have that h(a) = f(a) — g(a) > 0
since f(a) > g(a) and h(b) = f(b) — g(b) < 0 since f(b) < g(b). So h satisfies the
intermidiate value theorem so there exists a ¢ €]a, b[ such that h(c) = 0. But h(c) =0
implies that f(c) — g(¢) = 0 meaning that f(c) = g(c).

11. Find the inverse of the following functions if they exist. Give the domain of both functions.

(a) flx)=+/(2z+4)3 -7
(b) f(z) = 222

2 a2
(¢) f(r) = SRTeos

Solution:

(a) To find the domain of f we notice that only positive values are accepted under the
square root sign:
VT

(2x+4)3—720:>x2—2+7

So Dy =[-2+ \%ﬁ, +oo[. We observe that f is injective because it is a composition
of injective functions: v/z, z — 7, 3 and 2x + 4 are all injective. Hence, an inverse
function exists. To find the inverse function we have:

ki

y=+vQ2r+4)83 -7= 5 —2=ux
So the inverse function is f~!(z) = 37“”22” — 2 and its domain is the entire real

numbers D1 = R.
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(b) To find the domain of f we notice that the denominator cannot become zero so
D; =R\{-5/3}. To find the inverse function we have:

2243

3—5y
Y= 3:+5

3y —2

= 3yr+oy=2x+3=2x2(3y—2)=3 -5y =z =

where we assumed that © # —5/3 and y # 2/3. So x is uniquely determined by y,
in particular the function f is injective. So the inverse function exists and is given
by f~'(z) = 3222 with the domain D;-1 = R\{2/3}.

(¢) Note that 2sinzcosz = sin(2z). Since the denominator cannot become zero, we
have that = # T where k € Z. So the domain of f is R\{%F |k € Z}. We have

cos?x —sin®z  cos(2x)

fw) = 2sinzcosz sin(2x) = cot(2z)

We observe that the function f is not injective because it is periodic. Hence the

inverse function does not exist. But g := flj = 10, 3[—= R is injective with inverse
’2

function g~!(z) = 3 arccot 2. The domain of the inverse function is Dy-1 = R.

12. Let I be an interval, f: I — R be a continuous function and f(I) the image of I by f. Say

the following statement are true or false.

(a) If I is bounded, then f(I) is bounded.
(b) If I = [a,00] with a € R, then f attains its maximum and minimum in I.

(c) If f is strictly increasing and I is open, then f(I) is open.

—-

f

Solution:

(a) False. Take for example the function f:]0,1[ — R defined by f(z) = 1. Then I is
bounded but f(I) =]1, 00| is not bounded.

(b) False. Take for example the function defined by f(z) = (z — a)sin(x — a). It
neither have a minimum nor a maximum on I because for all n € N, we have
f(a+g+27m) = 3 +27mn >n and f(a—%+27m) =3 —2mn < —n.

(c) True. Let a,b € RU {£o0} with a < b such that I =]a,b[. Since the function is

strictly increasing, we have
A= Ilggr f(x) =inf{f(x) : z €la,b[} < sup{f(z) : x €]a,b[} = mhj?f f(z)=B

and A, B defined above belong to R U {+oo}. In particular, f(I) C [A4,B]. We
observe that if A € f(I), then there exists « €]a,b[ such that f(xz) = A. Since f is
strictly increasing, then x < a, which is impossible because z > a. Hence A ¢ f(I).
Similarly we prove that B ¢ f(I). So we conclude that f(I) C]A, B[. Now we
observe that by definition of limits we can find sequences (x,), (y,) contained in
Ja,b[ such that (x,) converges to a and (y,) converges to b and z, < y, for all
n € N, so that (f(z,)) converges to A and (f(y,)) converges to B, and hence A, B[=
Unenlf(zn), f(yn)]. By the intermediate value theorem, we have [f(z,), f(yn)] C
f(I) for all n € N. Then

]A’ B[: UnEN[f(xn)’ f(yn)] - f(I)
We proved that f(I) is the open interval | A, B].
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13. Find, if it exists, continuous extension of the function f :]2, co[— R give by f(z)
at o = 2, or otherwise show that f cannot have a continuous extension at z.

_ Va-\3r/a3

VaZ—4

Solution:

We check if the limit lim,_,o+ f(2) exists. We have:

Vi~ 2

vr—2

lim

lim VI V24 33—2: (

z—21 r—2+

V=2V +2

Vi3

\/x—2-\/x+2>
V=2 Jz+2

1

2 —4

VIi—2-V2t+2 V-2 Jz++2

(z —2)

Ve —2 1

(

function as:

fz) =

which is continuous on [2, col.

T—2) Vat2 JT+V2
1

f(=),
1/2,

{

+
Vo +2

So we can extend the function f continuously to the interval [2,00[. We define the new

x> 2
xr=2

+
V42

)
)

14. The Bisection Algorithm: Using the intermediate value theorem and successive bisection
of the interval [0, 1], find an interval of the length L < % that contains a solution of the

equation

2 +rx—1=0.

Solution:

contains the root zg.

can find a root z.

indeed inside the obtained interval.

fO)=—-1<0 e f(1)=1>0
F() =<0

f(3)=0172>0
f(3)=-0130<0

= xo €10,1],
= zo € 3,11,
= welnil,
= welgil,

So xg € ]2,2[ =]0.625,0.75[. The exact value of the root is zy = 0.6823...

We search for a root xq of the function f(r) = 2%+ — 1, i.e. 2 that satisfies f(zo) = 0.
The bisection algorithm is an iterative routine that successively restricts the interval that

The steps of the algorithm is given below, where L is the length of the interval where we

L=1
L=
=1
L=t

which 1is
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15. Let the function f: [0,00) — R be defined as

322 —10x + 3

22 —-2x -3 "’ v>3
flz) = a, r =3

Bx —4 Tz <3

Find a, 8 € R such that the function is continuous at x = 3.

Solution:

For the function to be continuous we require lim,_,3- f = lim,_,3+ f = f(3)We first
compute the right limit at x = 3:

322 — 10z +3 (x—=3)(3z—1)

= —:2
20— 3 oot (z—3)(z+1)

lim f(z) = lim

r—3+ r—3t 2 —
This implies that f(3) = o = 2. Also for the limit from the left we have:

lim f(z) = lirgfﬁx—4:3ﬁ—4

r—3~

So 38 —4 =2, and we get § = 2.

16. Show that if f(z) is continuous on [—1,1] and f(—1) = f(1), then there exists § € [0, 1] such
that f(6) = f(8 — 1).
Solution:
First, consider the function g(x) = f(z — 1) — f(x), which is continuous on [0, 1]. Now we
know the following:
9(0) = f(=1) = f(0)

and
g(1) = f(0) = f(1)

But we know that f(—1) = f(1), so we can manipulate the second equation to get

e If g(0) =0, then f(—1

) =
o If g(0) > 0, then g(1) <
d € [0,1] such that g(d) =
. If g(O) < 0, then g(1) >
€ [0,1] such that g(0) =

f(0) by the first equation. Hence, 6 = 0 € [0,1].

0 so by the intermediate value theorem there exists a
0, meaning f(§ — 1) = f(9).

O so by the intermediate value theorem there exists a
, meaning f(6 — 1) = f(9).

17. Find, if it exists, continuous extension of the function f :
at zg = 0, or otherwise show that f cannot have a continuous extension at xg.

l—cosx
tan? x

fz) =

[—7/4,0[U]0,7/4] — R given by

Solution:
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We check if the limit of f exists as z — 0. We have

. 1l—cosz . l—cosxz 1+4cosx
lim 5 = lim — .
=0 tan®z @0 sz ] 4 cosw
COos< T
. 1l—cos?z cos? x
= lim —5 .
z—0 sin“zx 1+ cosx
. sin’z cos? x
=lm —— ———
z—0gin“xy 1+ cosz
1
2

So we can extend the function f continuously to the interval [—m/4,w/4]. We define the

new function as:
r o f(.’l?), € 7é 0
f(x){l/z, =0

which is continuous on [—7/4, 7 /4].

18. Let us define the functions

et +e* e —e® sinh(x)

cosh(z) = , sinh(z) = 5 tanh(z) = cosh(z)’

(a) Find domain and range for each of the 3 functions.
(b) Show that
cosh(z)? — sinh(x)? = 1.
(¢) Find a suitable domain, for each of the 3 functions, over which the function is invertible.
(d) Compute
xll)ar_loo cosh(z), Igr_noo cosh(z),

lim sinh(z), ‘EIEI sinh(z),

r——+00
lim tanh(z), lim tanh(x).
r—+00 T——00

Solution:

(a) Ase® e * are defined over all of the real numbers, that is, Dom(e*) = Dom(e™%) =
R, then the same holds true for sinh(z), cosh(z). Moreover, cosh(z) > 0, Vo € R,
hence also Dom(tanh(z)) = R.

Let us examine the ranges. Let us notice that cosh(z) is even, while sinh(z) is odd,
and tanh(z) is odd, as well.
sinh(x) is strictly increasing on the interval [0, +o00l: in fact, taking s > ¢ > 0, then
e® > e' (or, equivalently, e — et > 0), e7* < e~ (or, equivalently, e™% — et < 0),
so that

sinh(s) >sinh(t) <= e —e *>e' —e f=e' —e > —e

But finally, e* — e~* < 0, while e* — e’ > 0, which show that the last inequality

above indeed holds.
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(b) By the definitions,

(em +e—m)2 621 _|_e—2:v +2€m€—m e?z +€—2x _|_2ez—m e?m +€—21 _|_2

‘h 2 — — — =
cosh(z) 1 I 1 I ,
inh(z)* (e —e ™) e e —2eTe M 4e I —2e"F  Pp4e -2

sinh(z)® = = = =
4 4 4 4 ’

2z —2x 2 2z —2x __ 2 4

— cosh(z)? — sinh(z)? = e 64 T2 et 64 == 1.
(¢) As cosh(z) = 4/1+sinh(z)? and over the positive real numbers the functions

f(x) = sinh(z), g(x) = 1 + 22, h(x) = /z are all strictly increasing and cosh(z) =
h(g(f(x))), then cosh(z) is strictly increasing on [0, +o00[. As cosh(x) is even, this
is the largest interval over which the function is injective (hence, invertible when we
take the arrival set to coincide with R(cosh(x)) = [1,+oo], since cosh(0) = 1 and
lim, 4 o cosh(z) = 400, and, again, cosh(z) is even).

As sinh(z) is odd, and strictly increasing on [0, 4o0[, then it is strictly increasing
over all of R and it is therefore invertible on R and R(f) = R, since sinh(0) = 0 and
lim,_, 1 o sinh(z) = +o00, and, again, sinh(z) is odd.

(d) Let us note that cosh(z) > |z|, Vo € R. Hence, the squeeze theorem implies im-
medaitely that
lim cosh(z) = +o0o= lim cosh(z).
r—+o0 T——00

Since lim, 4o €¥ = 400, then lim;_, o e™* =0 and

. sinh(z . e L . e |
lim ( ) = lim 2 — ljm &€ —_,
z— 400 et T——400 e’ r—+00 2 2

Hence sinh(z) > 1e®! for z > 0, hence

lim sinh(z) = 4o0.
x—+00

As sinh(z) is odd, then

lim sinh(z) = —oc.
r—r— 00
Finally,
] h T _ ,—T
lim tanh(z) = lim sinh(z) = lim % =
z—+00 z—+oo cosh(z) w—too e® e~ 7
T, (T _ T 1— —2z
i (it el
z—+oo e . (eT 4 e %) zofoo 1427

since limg 400 ™% = limy 4 oo e% =0.
As tanh(z) is odd, then
lim tanh(z) = —1.

r——00
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