
Analysis I (English)
Roberto Svaldi and Stefano Filipazzi
Fall Semester 2021–2022

Analysis 1 - Exercise Set 7

Remember to check the correctness of your solutions whenever possible.

To solve the exercises you can use only the material you learned in the course.

1. (a) Show that for every n ∈ N∖ {0}

n∑
k=1

(−1)k+1 k

k2 − 1
4

= 1 +
(−1)n+1

2n+ 1
.

(b) Use the previous part to compute
∑∞

k=1(−1)k+1 k
k2− 1

4

.

(c) Is the series absolutely convergent?

Solution:

(a) We prove it by induction on n. For n = 1 both sides are equal to 4
3 . Assume that

n > 1 and that the equality holds for n− 1. Then

n∑
k=1

(−1)k+1k

k2 − 1
4

= 1 +
(−1)(n−1)+1

2(n− 1) + 1
+

(−1)n+1n

n2 − 1
4

= 1 +
(−1)n

2n− 1
+

4(−1)n+1n

4n2 − 1

= 1 + (−1)n
(

1

2n− 1
− 4n

(2n− 1)(2n+ 1)

)
= 1 + (−1)n

2n+ 1− 4n

(2n− 1)(2n+ 1)

= 1 + (−1)n+1 2n− 1

(2n− 1)(2n+ 1)
= 1 + (−1)n+1 1

2n+ 1

(b)
∞∑
k=1

(−1)k+1 k

k2 − 1
4

= lim
n→∞

n∑
k=1

(−1)k+1 k

k2 − 1
4

= lim
n→∞

1 +
(−1)n+1

2n+ 1
= 1.

(c) We observe that 0 ≤
∣∣∣(−1)k+1 k

k2− 1
4

∣∣∣ = 1
k− 1

4k

and 1
k− 1

4k

≥ 1
k for all k ≥ 1. Since

the series
∑∞

k=1
1
k diverges, the series

∑∞
k=1

(−1)k+1k

k2− 1
4

does not converge absolutely

by the comparison criterion (see week 6 worksheet).

2. Determine for which values of a ∈ ((0,+∞) \ {1}), the series

∞∑
n=1

an

a2n − 1

converges. (Hint: use the Cauchy criterion.)



Solution:

We observe that

bn := n

√∣∣∣∣ an

a2n − 1

∣∣∣∣ = a
n
√
|a2n − 1|

=
1

a n
√

|1− (a−1)2n|

If a < 1, then a
n
√

|a2n−1|
= a

n√1−a2n
. Moreover, the sequence a2n decreases, then the

sequence 1− a2n increases. So

n
√
1− a ≤ n

√
1− a2n ≤ 1

for all n ≥ 1. Since ( n
√
1− a) converges with limit 1, the sequence ( n

√
1− a2n) converges

with limit 1 by squeeze theorem. Then (bn) converges with limit a. Since a < 1 we
conclude that the series converges by the Cauchy criterion.

If a > 1, then a−1 < 1 and 1

a n
√

|1−(a−1)2n|
= a−1

n
√

1−(a−1)2n
. Repeating the previous argu-

ment with a replaced by a−1, we obtain that (bn) converges with limit a−1. Since a−1 < 1
we conclude that the series converges by the Cauchy criterion.

3. Compute lim
n→∞

n
√
n!

Solution:

First note that n! ≥ n(n − 1)(n − 2) · · · ⌊n
2 ⌋ ≥ ⌊n

2 ⌋
⌊n

2 ⌋. Thus, n
√
n! ≥ ⌊n

2 ⌋
⌊n

2 ⌋ 1
n . We can

also see that ⌊n
2 ⌋

1
n ≥ 1

10 for sufficiently large n. Thus, n
√
n! ≥ ⌊n

2 ⌋
⌊n

2 ⌋ 1
n ≥ ⌊n

2 ⌋
1
10 and the

latter diverges to +∞. Hence, lim
n→∞

n
√
n! = +∞.

4. Let (xn) be a sequence.

(a) Show that if lim
n→∞

n
√
|xn| = ρ, with ρ > 1, then (xn) is unbounded. In particular, it

diverges.

(b) Show that if lim
n→∞

n
√
|xn| = ρ, with 0 ≤ ρ < 1, then (xn) converges to 0. In particular, it

is bounded.

(c) Provide two sequences (yn) and (zn) with the following properties: (yn) converges and
lim

n→∞
n
√
|yn| = 1, and (zn) diverges to +∞ and lim

n→∞
n
√

|zn| = 1

Solution:

(a) Note that we have lim
n→∞

n
√

|xn|
ρ = 1.

Suppose that (xn) is bounded, say |xn| ≤ C ∀n ∈ N for some positive constant C.
Thus,

1 = lim
n→∞

n
√

|xn|
ρ

≤ lim
n→∞

n
√
C

ρ
=

1

ρ
< 1

since ρ > 1. This is a contradiction and therefore (xn) is unbounded and it must
diverge.

Page 2



(b) Note that we have lim
n→∞

n
√
|xn| = ρ with 0 ≤ ρ < 1.

Let ϵ = 1−ρ
2 . Then, by definition of convergence, there exists N ∈ N such that,

for evey n ≥ N , | n
√
|xn| − ρ| ≤ 1−ρ

2 . In particular, for every n ≥ N , we have

0 ≤ | n
√
|xn| ≤ 1+ρ

2 . Also, notice that 1+ρ
2 < 1. Then, by raising the inequality to

the n-th power, we have

0 ≤ |xn| ≤
(
1 + ρ

2

)n

.

In turn, we have

−
(
1 + ρ

2

)n

≤ xn ≤
(
1 + ρ

2

)n

for every n ≥ N . Since 0 < 1+ρ
2 < 1, its geometric sequence converges to 0. Then,

by the squeeze theorem, also (xn) converges to 0.

(c) Consider the constant sequence yn = 5 for all n and the sequence zn = n.

5. Let (tn) ⊂ R∗ be a sequence. Assume that lim
n→∞

tn = 0. Show that lim
n→∞

sin(tn)
tn

= 1.

(Hint: recall that for x ∈ [0, π
2 ],

0 ≤ sin(x) ≤ x ≤ tan(x) ⇒ 1 ≤ x

sin(x)
≤ 1

cos(x)
⇒ cos(x) ≤ sin(x)

x
≤ 1

⇒ cos(x)2 ≤
(
sin(x)

x

)2

≤ 1 ⇒ 1− sin(x)2 ≤
(
sin(x)

x

)2

≤ 1

⇒ 1− x2 ≤
(
sin(x)

x

)2

≤ 1 ⇒
√

1− x2 ≤ sin(x)

x
≤ 1.)

Solution:

As lim
n→∞

tn = 0, then there exists N ∈ N such that ∀n ≥ N , then |tn| ≤ π
2 . Moreover, as

sin(x) is an odd function, then

sin(tn)

tn
=

sin(|tn|)
|tn|

.

Then, by the hint, ∀n ≥ N ,√
1− t2n ≤ sin (|tn|)

|tn|
=

sin(tn)

tn
≤ 1.

As lim
n→∞

tn = 0, then

lim
n→∞

√
1− t2n = 1.

[Prove this!! Hint: for 0 < x < 1, 1 >
√
1− x2 > 1− x2 > 1− x.]

Hence, the squeeze theorem for sequences implies the desired conclusion.

6. Show that if lim
n→∞

|xn+1|
|xn| = 1, then anything can happen for

∞∑
n=0

xn. That is, it is possible to

find sequences (xn) such that:
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(a) (xn) is unbounded;

(b) (xn) is bounded and
∞∑

n=0
xn diverges;

(c) (xn) is bounded and
∞∑

n=0
xn converges absolutely;

(d) (xn) is bounded and
∞∑

n=0
xn converges but not absolutely.

For each item above, provide an example.

Solution:

(a) Take xn = log(n).

(b) Take xn = 1
n .

(c) Take xn = 1
n2 .

(d) Take xn = (−1)n 1
n .

7. For each of the following, determine whether the series is convergent or divergent.

(a)
∞∑
k=1

πk

k·2k

(b)
∞∑

n=1

√
n+4−

√
n+2

n

(c)
∞∑
k=2

k2−1
(k−1)3

Solution:

(a) We observe that
πk

k · 2k
=
(π
2

)k
· 1
k
≥ 1

k
≥ 0

for all k ≥ 1. So the series diverges by the comparison criterion, because the series∑∞
k=1

1
k diverges.

(b) We observe that

0 ≤
√
n+ 4−

√
n+ 2

n
=

n+ 4− (n+ 2)

n(
√
n+ 4 +

√
n+ 2)

=
2

n(
√
n+ 4 +

√
n+ 2)

≤ 2

n(
√
n+

√
n)

=
1

n
3
2

.

Therefore, the series is convergent by the comparison criterion, because the series∑∞
k=1

1

n
3
2
converges as 3

2 > 1.

(c) We observe that
k2 − 1

(k − 1)3
=

k + 1

(k − 1)2
≥ 1

k
≥ 0.

So the series diverges by the comparison criterion, because the series
∑∞

k=1
1
k di-

verges.
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8. Using the definition, state if the following functions are injective, surjective or bijective. If the
function is bijective, find the inverse function.

(a) f : R → R, f(x) = x5

(b) f : [0,∞) → R, f(x) =
√
x

Solution:

(a) Injective: we must show that if for some x1 ∈ x2 in the domain of f , f(x1) = f(x2)
then x1 = x2. We have

f(x1) = f(x2) ⇒ x5
1 = x5

2 ⇒ 5

√
x5
1 = 5

√
x5
2 ⇒ x1 = x2.

So f is injective.

Surjective: we must show that for any y ∈ R there exist x in the domain of f such
that f(x) = y. For any given y it is enough to take x = 5

√
y, then f(x) = y. So f is

surjective.

Since f is both injective and surjective then it is bijective. The inverse function is
given by f−1(x) = 5

√
x.

(b) Injective: We have

f(x1) = f(x2) ⇒
√
x1 =

√
x2 ⇒ (

√
x1)

2 = (
√
x2)

2 ⇒ |x1| = |x2| ⇒ x1 = x2.

The last step is true because we know that x1, x2 ∈ [0,∞). So f is injective.

Surjective: This function is not surjective since there is no x ∈ [0,∞) that is mapped
to negative numbers. Since the function is not surjective then it is not invertible.

9. For the two functions f : R → R and g : R → R below, find g ◦ f and f ◦ g.

f(x) =

{
x+ 1 if x ≥ 0

x2 if x < 0
, g(x) =

{
2x− 3 if x ≥ 1

1− x if x < 1

Solution:

For g ◦ f : Note that if x ≥ 0 then f(x) ≥ 1, if −1 < x < 0 then 0 < f(x) < 1 and when
x ≤ −1 then f(x) ≥ 1 so

g ◦ f(x) =


2(x+ 1)− 3 if x ≥ 0

1− (x2) if − 1 < x < 0

2(x2)− 3 if x ≤ −1

and for f ◦ g: Note that if x ≥ 3/2 then g(x) ≥ 0, if 1 ≤ x < 3/2 then −1 ≤ g(x) < 0 and
when x < 1 then g(x) > 0 so

f ◦ g(x) =


(2x− 3) + 1 if x ≥ 3/2

(2x− 3)2 if 1 ≤ x < 3/2

(1− x) + 1 if x < 1
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10. State if the following are true or false.

(a) The function f =
√
1− cosx is even.

(b) There is no function which is both even and odd.

(c) Let f be an odd function. If f is bijective, then f−1 is also odd.

Solution:

(a) True. We have

f(−x) =
√
1− cos(−x) =

√
1− cos(x) = f(x)

(b) False. If a function is both even an odd then we have:

f(−x) = f(x) = −f(x) =⇒ f(x) = −f(x) =⇒ f(x) = 0

So f(x) = 0 is a function that is both even and odd.

(c) True. Note that f ◦ f−1 = id, which means that f ◦ f−1(y) = id(y) = y. We have

−y = −y ⇒ id(−y) = −id(y) ⇒ f ◦ f−1(−y) = −f ◦ f−1(y)

But since f is an odd function we have that f(−x) = −f(x). So we can write

⇒ f(f−1(−y)) = f(−f−1(y))

Now since f is injective we know that if f(x1) = f(x2) then x1 =2, meaning

⇒ f−1(−y) = −f−1(y)

This shows that f−1 is an odd function.

11. Given functions f : R → R and g : R → R, Determine the monotonicity (increasing or
decreasing) of the composition g ◦ f : R → R in the following cases:

(a) if f and g are both increasing.

(b) if f and g are both decreasing.

(c) if f is increasing and g is decreasing. What can we say about f ◦ g?

Solution:

(a) If f and g are both increasing, we have

x1 ≤ x2 =⇒ f(x1) ≤ f(x2) =⇒ g(f(x1)) ≤ g(f(x2))

In the first step we used monotonicity of f and in the second step we used mono-
tonicity of g. So g ◦ f is an increasing function.

(b) If f and g are both decreasing, we have

x1 ≤ x2 =⇒ f(x1) ≥ f(x2) =⇒ g(f(x1)) ≤ g(f(x2))

In the first step we used monotonicity of f and in the second step we used mono-
tonicity of g. So g ◦ f is an increasing function.
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(c) If f is increasing and g is decreasing, we have

x1 ≤ x2 =⇒ f(x1) ≤ f(x2) =⇒ g(f(x1)) ≥ g(f(x2))

so g ◦ f is decreasing.

For f ◦ g we have

x1 ≤ x2 =⇒ g(x1) ≥ g(x2) =⇒ f(g(x1)) ≥ f(g(x2))

This shows that f ◦ g is again decreasing. Hence, the composition of functions with
opposite monotonicity is always decreasing.

12. Using the definition, state if the following functions are injective, surjective or bijective. If the
function is bijective, find the inverse function.

(a) f : R → [−1, 1], f(x) = sinx

(b) f : [0, π] → [−1, 1], f(x) = cosx

Solution:

(a) Injective: This function is not injective, because we can find x1 ̸= x2 such that
f(x1) = f(x2). For example sin(0) = sin(π) = 0.

Surjective: For any given y it is enough to take x = arcsin(y) then f(x) = y. So f
is surjective.

(b) Injective: We have

f(x1) = f(x2) ⇒ cos(x1) = cos(x2) ⇒ arccos(cos(x1)) = arccos(cos(x2)) ⇒ x1 = x2.

So f is injective.

Surjective: For any given y ∈ [−1, 1] it is enough to take x = arccos(y), then
f(x) = y. So f is surjective.

Since f is both injective and surjective then it is bijective. The inverse function is
given by f−1(x) = arccos(x).

13. For the two functions f : R → R and g : R → R below, find g ◦ f and f ◦ g.

f(x) =

{
|2x− 1| if x ≥ −1

− x(x+ 2) if x < −1
, g(x) =

{
−

√
x− 4 if x ≥ 4

1− x/2 if x < 4

Solution:

For f ◦ g :
For x ≥ 4 we have

−
√
x− 4 ≥ −1 ⇔ x− 4 ≤ 1 ⇔ 4 ≤ x ≤ 5
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and for all x < 4 we have 1− 1
2x ≥ −1. So g(x) ≥ −1 ⇔ x ≤ 5 and it follows

(f ◦ g)(x) =

{
|2g(x)− 1|, x ≤ 5

−g(x)
(
g(x) + 2

)
, x > 5

=


|1− x|, x < 4∣∣− 2

√
x− 4− 1

∣∣, 4 ≤ x ≤ 5

2
√
x− 4− x+ 4, x > 5

 =


|1− x|, x < 4

2
√
x− 4 + 1, 4 ≤ x ≤ 5

2
√
x− 4− x+ 4, x > 5

For g ◦ f :
For x ≥ −1, we have

|2x− 1| ≥ 4 ⇔ 2x− 1 ≥ 4 or 2x− 1 ≤ −4 ⇔ x ≥ 5

2
(since x ≥ −1)

and for x < −1 we have −x(x+2) ≥ 4 ⇔ x2 +2x+4 ≤ 0, which is impossible since the
polynomial has no real roots. So f(x) ≥ 4 ⇔ x ≥ 5

2 and therefore

(g ◦ f)(x) =

{
−
√
f(x)− 4, x ≥ 5

2

1− 1
2f(x), x < 5

2

=


−
√
|2x− 1| − 4, x ≥ 5

2

1− 1
2 |2x− 1|, −1 ≤ x < 5

2

1
2x

2 + x+ 1, x < −1

 =


−
√
2x− 5, x ≥ 5

2

1− 1
2 |2x− 1|, −1 ≤ x < 5

2

1
2x

2 + x+ 1, x < −1

14. State if the following are true or false.

(a) If f is an even function and g is an odd function, then h = f · g is an odd function.

(b) If f is an even function and g is an odd function, then h = f ◦ g is an odd function.

(c) A function is either even or odd or both.

Solution:

(a) True. We have

h(−x) = f(−x)g(−x) = (f(x)) · (−g(x)) = −f(x)g(x) = −h(x)

(b) False. We have

h(−x) = f(g(−x)) = f(−g(x)) = f(g(x)) = h(x)

So h is an even function.

(c) False. Take for example f(x) = x + x2. Then f(−x) = −x + x2 ̸= f(x) ̸= −f(x).
So this function is neither even nor odd.

15. Calculate the following limits.
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(a) lim
x→0

x3+4x
2x

(b) lim
x→0

√
9+x−3
x

(c) lim
x→0

cos(x)−1
x2

Solution:

(a)

lim
x→0

x3 + 4x

2x
= lim

x→0

x(x2 + 4)

2x
= lim

x→0

x2 + 4

2
= 2

(b)

lim
x→0

√
9 + x− 3

x
= lim

x→0

√
9 + x− 3

x
·
√
9 + x+ 3√
9 + x+ 3

= lim
x→0

x

x(
√
9 + x+ 3)

= lim
x→0

1√
9 + x+ 3

=
1

6

(c)

lim
x→0

cos(x)− 1

x2
= lim

x→0

−2 sin2(x/2)

x2
= lim

x→0
(−2) · sin(x/2)

2 · x/2
· sin(x/2)

2 · x/2

= lim
x→0

(−1

2
) · sin(x/2)

x/2
· sin(x/2)

x/2
= −1

2

16. Calculate the following limits.

(a) lim
x→4

x2+5x−36
x2−16

(b) lim
x→1

xn−1
x−1 (Hint: Try to factorize x− 1 from the numerator.)

Solution:

(a)

lim
x→4

x2 + 5x− 36

x2 − 16
=

(x− 4)(x+ 9)

(x− 4)(x+ 4)
= lim

x→4

x+ 9

x+ 4
=

13

8

(b) We use the formula

xn − 1 = (x− 1)(xn−1 + xn−2 + · · ·+ x+ 1)

to rewrite

lim
x→1

xn − 1

x− 1
= lim

x→1

(x− 1)(xn−1 + xn−2 + · · ·+ x+ 1)

x− 1

= lim
x→1

(
xn−1 + xn−2 + · · ·+ x+ 1

)
=n

17. (Multiple choice) The series
∞∑

n=1

(−1)nn500

(1.0001)n
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(a) converges absolutely.

(b) converges, but not absolutely.

(c) approaches +∞.

(d) approaches −∞.

Solution:

(a) is correct. To check absolute convergence we consider the sequence

an =

∣∣∣∣ (−1)nn500

(1.0001)n

∣∣∣∣ = n500

(1.0001)n

Now we use the ratio test

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(n+1)500

(1.0001)n+1

n500

(1.0001)n

= lim
n→∞

(
n+ 1

n

)500
1

1.0001
=

1

1.0001
≤ 1

This means that the series is absolutely convergent by Alembert’s criterion.

18. (Multiple choice) The series

∞∑
n=1

(
n√
n+ 1

− n+ 1√
n+ 1 + 1

)
(a) diverges.

(b) converges to 1
2 − 2√

2+1
.

(c) converges to 1
2 .

(d) converges to 0.

Solution:

We observe that for every m > 0, the sequence

Sm :=

m∑
n=1

(
n√
n+ 1

− n+ 1√
n+ 1 + 1

)
=

1

2
− m+ 1√

m+ 1 + 1

approaches −∞. Hence, the series diverges.

19. (Multiple choice) The series
∞∑

n=1

(
1− 1

n

)n

is

(a) divergent.

(b) converges to e.

(c) converges to e−1.

(d) converges to 1.
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Solution:

(a) is correct. Take an = (1− 1
n )

n. We know that

lim
n→∞

(
1− 1

n

)n

= e−1 ̸= 0

If the sequence does not converge to zero then the series is divergent.

20. (Multiple choice) The limit

lim
n→∞

3

√
1− 1

n − 1

4

√
1− 1

n − 1

is

(a) 3
4

(b) 4
3

(c) ∞
(d) 0

Solution:

(b) is correct. We use the identity

(aN − 1) = (a− 1)(aN−1 + aN−2 + · · ·+ 1).

For a = 3

√
1− 1

n and N = 3 we have

(
1− 1

n

)
− 1 =

(
3

√
1− 1

n
− 1

) 3

√(
1− 1

n

)2

+
3

√
1− 1

n
+ 1

 .

For a = 4

√
1− 1

n and N = 4 we have

(
1− 1

n

)
− 1 =

(
4

√
1− 1

n
− 1

) 4

√(
1− 1

n

)3

+
4

√(
1− 1

n

)2

+
4

√
1− 1

n
+ 1


so

lim
n→∞

3

√
1− 1

n − 1

4

√
1− 1

n − 1
= lim

n→∞

(1− 1
n )− 1

(1− 1
n )− 1

·
4

√
(1− 1

n )
3 + 4

√
(1− 1

n )
2 + 4

√
1− 1

n + 1

3

√
(1− 1

n )
2 + 3

√
1− 1

n + 1
=

4

3

21. (Multiple choice) The limit

lim
n→∞

(
n+ 2

n

)n
n+ 2

n+ 1

is

(a) e2
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(b) e

(c) ∞
(d) 0

Solution:

(a) is correct. We have(
n+ 2

n

)n
n+ 2

n+ 1
=

(
n+ 1

n

)n(
n+ 2

n+ 1

)n+1

=

(
1 +

1

n

)n(
1 +

1

n+ 1

)n+1

and

lim
n→∞

(
1 +

1

n

)n(
1 +

1

n+ 1

)n+1

= e2

22. (Multiple choice) The limit

lim
n→∞

n2 · sin
(
2n+ 3

n3

)
is

(a) 0

(b) 1
2

(c) 2

(d) ∞

Solution:

(c) is correct. Note that √
1− x2 ≤ sinx

x
≤ 1

so √
1−

(
2n+ 3

n3

)2

≤
sin
(
2n+3
n3

)(
2n+3
n3

) ≤ 1

Since limn→∞
(
2n+3
n3

)
= 0 then by the squeeze theorem we have that

sin
(
2n+3
n3

)(
2n+3
n3

) = 1.

So for the original limit we can write

lim
n→∞

n2 · sin
(
2n+ 3

n3

)
= lim

n→∞

sin
(
2n+3
n3

)(
2n+3
n3

) ·
(
2n+ 3

n3

)
· n2 = lim

n→∞

sin
(
2n+3
n3

)(
2n+3
n3

) · 2n
3 + 3n2

n3
= 2
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