
Analysis I (English)
Roberto Svaldi and Stefano Filipazzi
Fall Semester 2021–2022

Analysis 1 - Exercise Set 6

Remember to check the correctness of your solutions whenever possible.

To solve the exercises you can use only the material you learned in the course.

1. Compute, if they exists, the limits of the following sequences

(a) n

√
3
n

(b) (−1)n
(

n2+1
n−1

)
(c) 1

n2

(√
1 + n+ πn2 + sin(n)

n − 1

)
(d) n

√
n log(n) (Hint : 1 < log(n) < n for n > 3)

(e) n2

(√
1 + 1

n + π 1
n2 + sin(n)

n5 − 1

)
(f)

(
n−1
n

)n2

(g) n

√
2n

3n2−1

(h) 4n2−2π
−n3+

√
7n

(i) (n+1)!
n!−(n+1)!

(j)

√
cos(n)

n2 +1−1√
e− 1

n−
√
e

Solution:

(a)

lim
n→∞

n

√
3

n
=

limn→∞
n
√
3

limn→∞
n
√
n
=

1

1
= 1

(b) Let an = (−1)n
(

n2+1
n−1

)
. Remark that the sequence

xn = |an| =
n2 + 1

n− 1
=

1 + n−2

n−1 − n−2

approaches +∞. Then (an) is divergent. The subsequence a2n = x2n converges to
+∞; on the other hand, the subsequence a2n+1 = −x2n+1 converges to −∞. We
conclude that an does not admit a limit.



(c) We have

1

n2

(√
1 + n+ πn2 +

sin(n)

n
− 1

)
=

√
1

n4
+

1

n3
+

π

n2
+

sin(n)

n5
− 1

n2

so the limit is zero. (Remark that limn→∞
sin(n)
n5 = limn→∞

sin(n)
n

n
n5 is zero, because

it is the limit of the product of a bounded sequences with a sequences that converges
to 0.)

(d) Using the hint, we have that

n
√
n < n

√
n log(n) <

n
√
n2.

Applying the squeeze theorem, we get that the limit is 1.

(e) The issue is that
√
1 + 1

n + π 1
n2 + sin(n)

n5 − 1 convergence to zero, but we do not

know the speed of convergence, so we do not know how to compare it with n2. To
this end, we kill the square root as usual writing

n2

(√
1 +

1

n
+ π

1

n2
+

sin(n)

n5
− 1

)
=

n2

(√
1 + 1

n + π 1
n2 + sin(n)

n5 − 1

)(√
1 + 1

n + π 1
n2 + sin(n)

n5 + 1

)
(√

1 + 1
n + π 1

n2 + sin(n)
n5 + 1

) =

=
n2
(

1
n + π 1

n2 + sin(n)
n5

)
(√

1 + 1
n + π 1

n2 + sin(n)
n5 + 1

) =
n+ π + sin(n)

n3(√
1 + 1

n + π 1
n2 + sin(n)

n5 + 1

) .

We conclude that the limit is +∞, because the denominator is a convergent sequence
with limit ̸= 0, the numerator is the sum of a sequence (n) that approaches +∞
with a sequence (π + sin(n)

n3 ) that is bounded below.

(f) We have

(
n− 1

n

)n2

=

((
1− 1

n

)n)n

We know that limn→∞
((
1− 1

n

)n)
= e−1. Hence we expect that

(
n−1
n

)n2

converges
to 0. Let’s prove it.

Let ε > 0 such that 0 < ε < min{e−1, 1 − e−1}. Let a = e−1 − ε and b = e−1 + ε.
Then 0 < a < e−1 < b < 1.

Since limn→∞
((
1− 1

n

)n)
= e−1, there exists an N such that for all n > N we have∣∣∣∣(1− 1

n

)n

− e−1

∣∣∣∣ < ε,

which is equivalent to

a <

(
n− 1

n

)n

< b.

Then

an <

(
n− 1

n

)n2

< bn

and we conclude applying squeeze theorem.
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(g) We have

n

√
2n

3n2 − 1
=

1
n
√
n

n

√
2n2

3n2 − 1
=

1
n
√
n

n

√
2

3− 1
n2

both factors converge now to 1, so the limit is 1.

(h) The limit is 0.

(i) Dividing numerator and denominator by n! we get that

(n+ 1)!

n!− (n+ 1)!
= −n+ 1

n

so the limit is −1.

(j) Numerator and denominator both tend to zero, and we tackle the square root in the
usual way, our sequence is indeed equal to(

cos(n)
n2 + 1− 1

)(√
e+ 1

n +
√
e
)

(√
e− 1

n −
√
e
)(√ cos(n)

n2 + 1 + 1

)
Which in turn equals (

cos(n)

n

)
√

e+ 1
n +

√
e√

cos(n)
n2 + 1 + 1


the first factor goes to zero, the second converge to a real number (actually

√
e, but

this does not matter), so the limit is zero.

2. Let a, b ∈ R+ and (xn) be a sequence defined by the recurrence relation

xn+1 = ax2
n x0 = b.

(a) Show by induction that every element in the sequence (xn) is given by

xn = a2
n−1b2

n

.

(b) Use part (a) to compute
lim

n→+∞
xn.

Solution:

(a) For n = 0 we have

x0 = a2
0−1b2

0

= b

which is true. Assuming that xn = a2
n−1b2

n

for some n, we have

xn+1 =ax2
n

=a ·
(
a2

n−1b2
n
)2

=a · a2·2
n−2b2·2

n

=a2
n+1−1b2

n+1

.

Page 3



(b) To calculate the limit, we first rewrite xn as

xn = a2
n−1b2

n

=
(ab)

2n

a

Now we have 3 different possibilities. If ab = 1 then

lim
n→+∞

xn =
(ab)

2n

a
=

1

a

if ab < 1 then

lim
n→+∞

xn =
(ab)

2n

a
= 0

if ab > 1 then

lim
n→+∞

xn =
(ab)

2n

a
= +∞

3. Show that the following recursive sequence is convergent and calculate the limit

an =
7

3
− 1

1 + an−1
, a1 = 1.

Solution:

If the limit lim
n→∞

an = a exists, it should satisfy the equation

a =
7

3
− 1

1 + a
⇔ 1 =

(
7

3
− a

)(
1 + a

)
⇔ 0 =

4

3
+

4

3
a− a2 ⇔

3a2 − 4a− 4 = (3a+ 2)(a− 2) = 0 ⇔ a = 2 or a = −2

3
.

We show by induction that an ≥ 0 for all n ∈ N∗. We have a1 = 1 ≥ 0. If an−1 ≥ 0, then

an =
7

3
− 1

1 + an−1
≥ 7

3
− 1 =

4

3
≥ 0.

So the only possible limit for (an) is a = 2.

We also show (by induction) that 2 is an upper bound for (an). We have a1 = 1 ≤ a. If
0 ≤ an−1 ≤ a, we than have

an =
7

3
− 1

1 + an−1
≤ 7

3
− 1

1 + a
= 2 = a .

Showing that (an) is an increasing sequence: for n ≥ 2 we have

an − an−1 =
7

3
− 1

1 + an−1
− an−1 =

4 + 4an−1 − 3a2n−1

3(1 + an−1)
≥ 0

if and only if 4 + 4an−1 − 3a2n−1 ≥ 0. The last inequality is true because 0 ≤ an−1 ≤ 2.
Since (an)n≥1 is increasing an bounded sequence then it is convergent with the limit a = 2.

4. This question is going to show that, whenever we have a sequence that is defined recursively,
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we need to show that it converges, and that computing the candidates for the limit is not
enough.

Consider the sequence defined as a1 = 10, an+1 = a2n for n ≥ 1.

(a) Show that, if the limit of (an) exists, then it is either 0 or 1.

(b) Show that (an) diverges to +∞.

Solution:

(a) Assume that (an) converges, and let L denote its limit. Then, by what we saw
in worksheet 5, also (an+1) converges to L. So, by the recursive relation, we have
L = L2. Then, the solutions to the equation L2 − L = 0 are 0 and 1, showing the
claim.

(b) We can use induction to show that an = 102
n−1

. As it is well known that the

geometric sequence (10m) diverges to +∞, then so does (102
n−1

), since it can be
regarded as a subsequence of (10m).

5. Compute the limit of an =
(

n+3
n+1

)n
using subsequences. (Hint: first, manipulate the definition

of an so that it looks more to the sequence of a previous exercise, then use the subsequence
with odd indices.)

Solution:

Write

an =

(
n+ 3

n+ 1

)n

=

(
1 +

2

n+ 1

)n

so that

a2n+1 =

(
1 +

1

n+ 1

)2n+1

=

((
1 +

1

n+ 1

)n+1
)2(

1 +
1

n+ 1

)−1

so a2n+1 converges to e2. Now, we argue as in Exercise 17 in the previous sheet.

6. State if the following statements are true or false. If you think the statement is true, then
prove that; otherwise, provide a counterexample.

(a) If a sequence is not bounded above, it must be increasing.

(b) Any monotone sequence has a convergent subsequence.

(c) If (an) has no divergent subsequence, then (an) is convergent.

(d) If (an) is Cauchy convergent, then also (|an|) is Cauchy convergent.

(e) If (an) is a Cauchy sequence, then the sequence bn = c · an, c ̸= 0 is a Cauchy sequence.

(f) If (an) is Cauchy, there exists ε > 0 such that |am − an| < ε for all m,n ∈ N.
(g) Any sequence has a convergent subsequence.

(h) If (an) and (bn) are Cauchy sequences, then the sequence cn = an + bn is a Cauchy
sequence.

Page 5



Solution:

(a) False. Take an = 0 if n is even and an = n if n is odd.

(b) False. Take an = n.

(c) True. (an) is a subsequence of (an) itself. So by definition it should be convergent.

(d) True. It follows directly from the inequality:∣∣|an| − |am|
∣∣ ≤ |an − am|.

(e) True. A shortcut is to use that fact that, for a sequence of real numbers, being
Cauchy is equivalent to be convergent, and the statement is of course true if we
replace Cauchy with convergent. Let us now give the proof using just the definition
of Cauchy sequence.

To show that (bn) is Cauchy we must show that for any ϵ > 0, there is N such that
for all i, j > N , |bi − bj | < ϵ. Let ϵ > 0 be given. Since (an) is Cauchy, there is N
such that for all i, j > N we have

|ai − aj | <
ϵ

|c|

Now for all i, j > N we have

|bi − bj | = |cai − caj | = |c| · |ai − aj | ≤ |c| · ϵ

|c|
= ϵ.

So (bn) is Cauchy.

(f) True. A sequence is Cauchy if and only if it is convergent. So (an) is a convergent
sequence, let a ∈ R be its limit. Then we can find C ∈ R such that

|an − a| ≤ C

for all n ∈ N. Using the triangle inequality we have

|am − an| ≤ |am − a|+ |a− an| ≤ 2C

for all m,n ∈ N. So it is enough to take ε = 2C.

(g) False. Take an = n.

(h) True. Since (an) and (bn) are Cauchy sequences they must converge. By Algebra
of Limits the sequence cn = an + bn must converge, which is equivalent to cn being
a Cauchy sequence.

7. Show if the sequence

an =
sin(an−1) + 1

2
a1 = 0

satisfies the definition of Cauchy sequence. (Hint: Use the trigonometric formulas from Ex-
ercise Sheet 1 )
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Solution:

We have for all integers n ≥ 2 :

|an+1 − an| =
1

2

∣∣ sin(an)− sin(an−1)
∣∣ = 1

2

∣∣∣∣2 sin(an − an−1

2

)
cos

(
an + an−1

2

)∣∣∣∣
≤
∣∣∣∣sin(an − an−1

2

)∣∣∣∣ ≤ |an − an−1|
2

,

In the last inequality we use the fact that | sin(x)| ≤ |x| for all x ∈ R.
If we apply the above inequality n− 1 times, we obtain

|an+1 − an| ≤
|a2 − a1|
2n−1

=

∣∣ 1
2 − 0

∣∣
2n−1

=
1

2n
.

For all couple of integers n > m ≥ 2, by using the triangle inequality we obtain:

|an − am| ≤
n−1∑
k=m

|ak+1 − ak| ,

so

|an − am| ≤
n−1∑
k=m

1

2k
=

1

2m

n−m−1∑
k=0

(
1

2

)k

=
1

2m
1−

(
1
2

)n−m

1− 1
2

=
1

2m−1

(
1−

(
1

2

)n−m

︸ ︷︷ ︸
≤1

)
≤ 1

2m−1
.

Since the sequence ( 1
2m−1 ) converges to 0, for every ε > 0 there exists Mε > 2 such that

for all m ≥ Mε we have 1
2m−1 < ε. Then |an − am| ≤ ε for all n > m ≥ Mε. We conclude

that |an − am| ≤ ε for all n,m ≥ Mε. Therefore it follows that (an)n≥1 is a Cauchy
sequence.

8. Let (an) and (bn) be two sequences. Show the following facts.

(a) Assume that (an) and (bn) are bounded. Prove that lim sup(an + bn) ≤ lim sup an +
lim sup bn.

(b) Provide an example of sequences (an) and (bn) such that the inequality in part (a) is
strict.

(c) Assume that lim inf an = 5. Show that there exists N ∈ N such that, for any n ≥ N ,
an ≥ 4.

(d) Assume (bn) is defined as follows:

bn =


100
n if 3|n
2− 1

n if 3|n− 1
1
2 if 3|n− 2

Compute lim sup bn, lim inf bn, and exhibit a subsequence of (bn) converging to lim sup bn
and a subsequence converging to lim inf bn.
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Solution:

(a) We have that lim sup an = lim
n→∞

sup{ak|k ≥ n}, lim sup bn = lim
n→∞

sup{bk|k ≥ n},
and lim sup(an + bn) = lim

n→∞
sup{ak + bk|k ≥ n} and all of these limits exist finite,

as (an), (bn), and therefore (an + bn) are bounded.

Fix n ∈ N and h ≥ n. Then, ah + bh ≤ sup{ak|k ≥ n} + bh ≤ sup{ak|k ≥
n} + sup{bk|k ≥ n}, where we used the definition of sup and the fact that h ≥ n.
Thus, sup{ak|k ≥ n}+sup{bk|k ≥ n} is an upper bound for {ak+bk|k ≥ n}. As sup
is the least upper bound of a set, it follows that sup{ak + bk|k ≥ n} ≤ sup{ak|k ≥
n}+ sup{bk|k ≥ n}.

(b) Consider (an) = (−1)n and (bn) = (−1)n+1. Then, lim sup an = lim sup bn = 1, but
an + bn = 0 for all n. Thus, lim sup(an + bn) = 0 < 2 = lim sup an + lim sup bn.

(c) By definition of lim inf, we have lim
n→∞

inf{ak|k ≥ n} = 5. Now, we apply the

definition of convergence to the sequence (inf{ak|k ≥ n}) with limit 5 and ϵ = 1.
Thus, there exist N ∈ N such that, for every n ≥ N , we have | inf{ak|k ≥ n}−5| ≤ 1.
In particular, we have inf{ak|k ≥ n} ≥ 5− 1 = 4. In particular, we have inf{ak|k ≥
N} ≥ 4. Then, by definition of inf, we have ak ≥ 4 for every k ≥ N .

(d) Clearly, the sequence is bounded above by 100 and below by 0. So, lim sup and lim inf
are finite. For n ≥ 50, we have 100

n ≤ 2. Thus, for every k ≥ 50, bk ≤ 2. So, by how
the sequence is defined, for every n ≥ 50, we have sup{bk|k ≥ n} ≤ 2. This shows
that lim sup bn ≤ 2. On the other hand, since {k|k ≥ n and 3|k − 1} ⊂ {k|k ≥ n},
we have

sup{bk|k ≥ n} ≥ sup{bk|k ≥ n and 3|k − 1} = sup{2− 1

k
|k ≥ n and 3|k − 1} = 2.

So, we have lim sup bn = 2. Notice that, for n ≥ 50, the sequence sup{bk|k ≥ n}
the sequence becomes constant with value 2. If we define nk = 3k+1, we have that
(bnk

) converges to 2, as bnk
= 2− 1

3k+1 .

Now, since bn ≥ 0 for every n, we have lim inf bn ≥ 0. We claim that the sequence
inf{bk|k ≥ n} is constant with value 0. Indeed, we have

0 ≤ inf{bk|k ≥ n} ≤ sup{bk|k ≥ n and 3|k} = inf{100
k

|k ≥ n and 3|k} = 0,

where the first inequality follows from the fact that (bn) is non-negative, the second
inequality from the fact that {k|k ≥ n and 3|k} ⊂ {k|k ≥ n}. This shows the
claim and that lim inf bn = 0. Then, if we define mk = 3k, the subsequence (bmk

)
converges to 0, as bmk

= 100
3k .

9. State if the following statements are true or false. If you think the statement is true, then
prove that; otherwise, provide a counterexample.

(a) If (xn) is a sequence that converges to 0, then the series
∑∞

n=0 xn converges.

(b) Let (xn) and (yn) be two sequences such that 0 ≤ xn ≤ yn for all n ∈ N. If the series∑∞
n=0 xn diverges, then the series

∑∞
n=0 yn diverges.

(c) Let (xn) and (yn) be sequences such that xn ≤ yn for all n ∈ N. If the series
∑∞

n=0 xn

diverges, then the series
∑∞

n=0 yn diverges.

(d) Let (xn) and (yn) be sequences. If the series
∑∞

n=0 xn converges and the sequence (yn)
converges, then the series

∑∞
n=0 xnyn converges.
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Solution:

(a) False. Take xn = 1
n for example.

(b) True. Let Sn :=
∑n

k=0 xk and Tn :=
∑n

k=0 yk. Then Sn ≤ Tn for all n ∈ N. Since
xn, yn ≥ 0 for all n ∈ N, the sequences (Sn) and (Tn) are both monotone increasing.
If
∑∞

n=0 xn diverges, then (Sn) is not bounded above. Since Sn ≤ Tn for all n ∈ N,
then also (Tn) is unbounded above, in particular, it cannot converge.

(c) False. Take xn = −n and yn = 1
n2 for example.

(d) False. Take for example xn = yn = (−1)n√
n

. Then limn→∞ yn = 0, the series
∑∞

n=0 xn

converges by the Leibniz criterion, and the series
∑∞

n=0 xnyn =
∑∞

n=0
1
n diverges.

10. For each of the following, determine whether the series is convergent or divergent.

(a)
∑∞

n=0
1

n2+n+3

(b)
∑∞

n=0
2n2+1
3n2+2

(c)
∑∞

n=1
(−1)n√
n+3

Solution:

(a) Define the sequence an = 1
n2+n+3 and the sequence bn = 1

n2 . We know that for all

n we have that an < bn. We also know that the series
∑∞

n=0 bn converges. By the
comparison criterion (see Exercise 9(b)), we conclude that the series

∑∞
n=0

1
n2+n+3

converges.

(b) Define the sequence an = 2n2+1
3n2+2 , this sequence does not converge to zero. So the

series is divergent.

(c) Define the sequence an = 1√
n+3

. This sequence converges to zero and is monotone.

By the Leibniz criterion alternating series we can then directly conclude that the

series
∑∞

n=1
(−1)n√
n+3

converge.

11. For each of the following, determine whether the series is convergent or divergent.

(a)
∑∞

n=0

sin(2n2)
n2+3

(b)
∑∞

n=1
(−10)n

42n+1(n+1)

(c)
∑∞

n=0(−1)n n
n+3

Solution:

(a) To figure this out define the new series by

∞∑
n=0

∣∣∣∣∣ sin
(
2n2
)

n2 + 3

∣∣∣∣∣
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We know that absolute converge implies convergence. So if the above series con-

verges, then the original series
∑∞

n=0

sin(2n2)
n2+3 must also converge. Define the se-

quence an =

∣∣∣∣ sin(2n2)
n2+3

∣∣∣∣ and the sequence bn = 1
n2 . We know that an < bn for all

n ≥ 1. We also know that the series
∑∞

n=0 bn converges; by the comparison criterion

(see Exercise 9(b)), we conclude that the series
∑∞

n=0

sin(2n2)
n2+3 converge.

(b) Applying the ratio test

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 10

16
< 1

So this series is convergent by Alembert’s criterion.

(c) Let xn := (−1)n n
n+3 . The series diverges. Indeed, if it were convergent, then (xn)

would be convergent and have limit 0. Then also limn→∞ |xn| would be 0. This is
in contradiction with

lim
n→∞

|xn| = lim
n→∞

n

n+ 3
= 1 ̸= 0.

12. For each of the following, determine whether the series is convergent or divergent.

(a)
∑∞

n=1
1√

n(n2+3)

(b)
∑∞

n=1

√
n5

n3+1

(c)
∑∞

k=1
(k!)2

(2k)!

Solution:

(a) We observe that

0 ≤ 1√
n(n2 + 3)

≤ 1√
n3

=
1

n
3
2

.

Therefore, the series is convergent by the comparison criterion (see Exercise 9(b)),
because the series

∑∞
k=1

1

n
3
2
converges as 3

2 > 1.

(b) We observe that √
n5

n3 + 1
=

1

n
1
2 + 1

n
5
2

is very close to 1

n
1
2
, so we expect that the series does not converge, because the

series
∑∞

n=1
1

n
1
2
diverges. We also observe that 1

n
1
2
≥ 1

n for all n ∈ N. Hence we try

to use the comparison criterion for the series we are studying. We observe that

1

n
1
2 + 1

n
5
2

≥ 1

n
(1)

holds if and only if
1

n
1
2

+
1

n
7
2

≤ 1. (2)
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Since the sequence
(

1

n
1
2
+ 1

n
7
2

)
converges to 0, there exists N > 0 such that (2)

holds for all n > N . Then also (1) holds for all n > N . Hence, we conclude that the

series
∑∞

n=1

√
n5

n3+1 diverges by the comparison criterion (see Exercise 9(b)), because

the series
∑∞

n=1
1
n diverges.

(c) We observe that

0 ≤ (k!)2

(2k)!
=

k · (k − 1) · · · 1
2k · (2k − 1) · · · (k + 1)

=

k−1∏
j=0

k − j

2k − j
=

k−1∏
j=0

1

1 + k
k−j

≤
(
1

2

)k

because k
k−j ≥ 1. Therefore, the series is convergent by the comparison criterion

(see Exercise 9(b)), because the series
∑∞

k=1

(
1
2

)k
converges.

13. (Multiple choice) The series
∞∑

n=0

(
1√
2

)n

is

(a) divergent.

(b) converges to 2 +
√
2.

(c) converges to 2−
√
2.

(d) cannot be determined.

Solution:

(b) is correct. We use the identity

aN − 1 = (a− 1)(aN−1 + aN−2 + · · ·+ 1)

to see that

SN :=

N∑
n=0

(
1√
2

)n

=

(
1√
2

)N+1

− 1

1√
2
− 1

So

lim
N→∞

SN =
1

1− 1√
2

=

√
2√

2− 1
=

√
2(
√
2 + 1) = 2 +

√
2.

14. (Multiple choice) The series
∞∑

n=1

cos(nπ)√
n

(a) converges absolutely.

(b) converges, but not absolutely.

(c) diverges to +∞.

(d) diverges to −∞.
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Solution:

(b) is correct. The point of this problem is really just to acknowledge that it is in fact an
alternating series. To see this we need to acknowledge that,

cos(nπ) = (−1)n

and so the series is really,
∞∑

n=1

cos(nπ)√
n

=

∞∑
n=1

(−1)n√
n

Now define a sequence bn = 1√
n
. The series is convergent, if limn→∞ bn = 0 and bn is

monotone. We see that indeed:

lim
n→∞

bn = lim
n→∞

1√
n
= 0

and also bn is a decreasing sequence. But on the other hand

∞∑
n=1

∣∣∣∣cos(nπ)√
n

∣∣∣∣ = ∞∑
n=1

1√
n
= +∞

So the series is convergent, but not absolutely.

15. Terminate the proof that we started in class showing the convergence of
∑∞

i=1
(−1)i

i . This is
what we have proven in class and that you can assume:

(a) the subsequence (yk) of (sn),

yk := s2k+1 =

2k+1∑
i=0

(−1)i

i

is strictly increasing;

(b) (yk) is bounded; in particular (yk) converges to a limit y ∈ R.

(H int: Show that (sn) is a Cauchy sequence. Use the fact that since (yk) converges, then it
is Cauchy, and that s2k − 1

2k+1 = s2k+1.)

Solution:

Since (yk) converges, in particular it is a Cauchy sequence. Hence for any ϵ > 0 there
exists kϵ ∈ N such that for all k1, k2 ∈ N, k1, k2 ≥ kϵ,

|yk1 − yk2 | < ϵ.

But this is equivalent to saying that for any ϵ > 0 there exists n′
ϵ ∈ N such that for all

n′
1, n

′
2 ∈ N, n′

1, n
′
2 odd, n′

1, n
′
2 ≥ n′

ϵ,

|sn′
1
− sn′

2
| < ϵ.

We have to find nϵ such that
|sn1 − sn2 | < ϵ.
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holds for any n1, n2 ≥ nϵ and not just the odd ones, for any fixed value of ϵ.
If n1 is even and n2 is odd, then we can write

|sn1
− sn2

| = |sn1−1 +
1

n1
− sn2

| ≤ 1

n1
+ |sn1−1 − sn2

|,

where the inequality follows from the triangle inequality. If n1, n2 are even, then we can
write

|sn1
− sn2

| = |sn1−1 +
1

n1
− sn2−1 +

1

n2
| ≤ 1

n1
+

1

n2
+ |sn1−1 − sn2−1|,

where the inequality follows from the triangle inequality.
Fix ϵ > 0. Let n′′

ϵ ∈ N be such that 1
n′′
ϵ
< ϵ

4 . Let n
′′′
ϵ := n′

ϵ
2
be the index in the definition

of Cauchy sequence for (yk) with
ϵ
2 . Define nϵ = maxn′′

ϵ , n
′′′
ϵ . Then for natural numbers

n,m, r, t ≥ nϵ, r, t odd, we have that

1

n
,
1

m
≤ ϵ

4
,

|sr − st| <
ϵ

2
.

If n1 is even and n2 is odd, n1, n2 ≥ nϵ then we can write

|sn1
− sn2

| = |sn1−1 +
1

n1
− sn2

| ≤ 1

n1
+ |sn1−1 − sn2

| < ϵ

4
+

ϵ

2
< ϵ.

If n1, n2 are even, then we can write

|sn1
− sn2

| = |sn1−1 +
1

n1
− sn2−1 +

1

n2
| ≤ 1

n1
+

1

n2
+ |sn1−1 − sn2−1| <

ϵ

4
+

ϵ

4
+

ϵ

2
= ϵ.
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