Analysis T (English) |
Roberto Svaldi and Stefano Filipazzi I

Fall Semester 2021-2022

Analysis 1 - Exercise Set 6

Remember to check the correctness of your solutions whenever possible.

To solve the exercises you can use only the material you learned in the course.
1. Compute, if they exists, the limits of the following sequences

@ {3

(b) (-1 (22)

(c) & (\/1—|—n+7rn2—|—5in7(bn) —1>

(d) ¥/nlog(n) (Hint: 1 <log(n) < n for n > 3)

(e) n? (¢1+;+w,32+ e — 1)

() (="
(8) /325

4an®—2rx
(h> _n3+\/?n

o) Y
VoV

Solution:

(a)

. nl3 hmn—mo {1/3 1

lim {/—= —2— =-=1
nsoo V' n o limy oo ¢/n 1

(b) Let a, = (—=1)" (L_Jrll) Remark that the sequence

n

n?+1 1+n2
Tn = lan] = n—1 nl-n2

approaches +o0o. Then (a,) is divergent. The subsequence as, = 2, converges to
+00; on the other hand, the subsequence as,+1 = —x2,41 converges to —oco. We
conclude that a,, does not admit a limit.




()

We have
1 \/ sin(n) 1 1 m sin(n) 1
il 1 24 2V ) =y N
n2< ot n n4+n3+nQJr nd n2
so the limit is zero. (Remark that lim,, Si?l(s") =lim, 00 #% is zero, because

it is the limit of the product of a bounded sequences with a sequences that converges
to 0.)

Using the hint, we have that
Yn < Ynlog(n) < Vn2.

Applying the squeeze theorem, we get that the limit is 1.

The issue is that \/1 + l + wi + 5”;# — 1 convergence to zero, but we do not
know the speed of convergence, so we do not know how to compare it with n2. To

this end, we kill the square root as usual writing

sin(n)
nO

)

. (142 frd 30 _q) (1414
9 1 1 sin(n) n n
AV et e T =
(\/1+ + n2+““‘”)+1>

n? (l+w%+M) n 47 )

n n n°

(\/1+}L+w,j?+s“jff” +1> (\/1+}l+7r;2+51?f?) +1>

We conclude that the limit is +00, because the denominator is a convergent sequence
with limit # 0, the numerator is the sum of a sequence (n) that approaches +oo

with a sequence (7 + bln(")) that is bounded below.

()= (6-2))

We know that lim,,_, ((1 —
to 0. Let’s prove it.

Let ¢ > 0 such that 0 < e < min{e !,1 —e '}. Leta=e ! —candb=ce"! +c.
Then 0 <a<e ' <b< 1.

Since lim,,_ o ((1 — %)n) = e~ !, there exists an N such that for all n > N we have

n
)n) = e¢~1. Hence we expect that (”Tfl)n2 converges

S|=

which is equivalent to

Then

2
—1\"
a"<(n) <b"
n

and we conclude applying squeeze theorem.
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(g) We have
Wf 201 ) 202 1 | 2
V3n2—1~ vaV3n2—1 n 3I-%
both factors converge now to 1, so the limit is 1.
(h) The limit is 0.
(i) Dividing numerator and denominator by n! we get that

(m+D! n+1
n!—(n+1) n

so the limit is —1.

(j) Numerator and denominator both tend to zero, and we tackle the square root in the
usual way, our sequence is indeed equal to

(2 +1-1) (Je+ L+ ve)
(ve-1-va) (V= v 141)

Which in turn equals

(cos(n)) \/e+%+\/g
Ve 141

the first factor goes to zero, the second converge to a real number (actually /e, but
this does not matter), so the limit is zero.

2. Let a,b € Ry and (z,) be a sequence defined by the recurrence relation
T+l = axi To = b.
(a) Show by induction that every element in the sequence (z,,) is given by

n__ n
x, =a® 1.

(b) Use part (a) to compute

lim =z,.
n—-+oo

Solution:

(a) For n =0 we have
0_ 0
rg=a®> "1 =0
which is true. Assuming that z, = a® ~'6%" for some n, we have
_ .2
Tpt+1 =0T,

n n 2
=a- (a2 —1p? )

on _ on
—q-q22 2p22

on+1_1,9n+1
=a b .
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(b) To calculate the limit, we first rewrite z,, as

27!,
— g2 12 = (ab)
a

Tn

Now we have 3 different possibilities. If ab = 1 then

271/
lim =z, = (ab) !
n—-+00 a a
if ab < 1 then -
b
lim =z, = (ab) =0
n—-+oo a
if ab > 1 then .
. ab)?
lim =z, = = 400
n—-+oo a

3. Show that the following recursive sequence is convergent and calculate the limit

7 1
an = =

- a1 =1
3 1+a,-1 !

Solution:

If the limit lim a, = a exists, it should satisfy the equation
n—oo

7 1 7 4 4
=_-— s 1=(--a|(1 & O0=-+4za-a® &
a 3 1+a <3 a>(+a) 3+3a a

2
3¢ —4a—4=3a+2)(a-2)=0 & a:20ra:f§.
We show by induction that a,, > 0 for all n € N*. We have a; =1 > 0. If a,,_1 > 0, then

7 1 >7 )
a = - - — —_ — =
"3 14a,1 3

W

> 0.

So the only possible limit for (a,) is a = 2.

We also show (by induction) that 2 is an upper bound for (a,). We have a; =1 < a. If
0 <a,_1 < a, we than have

1
1+ Gn—1

<7 1 o
=3 14a -

o =1 _
"3

Showing that (a,) is an increasing sequence: for n > 2 we have

1 4+4a, 1 — 3a2_
Ap—1 — a ! an1>0

7
b O T any "' T 30tany)

if and only if 4 + 4a,,_1 — 3a2_; > 0. The last inequality is true because 0 < a,,_; < 2.
Since (an)n>1 is increasing an bounded sequence then it is convergent with the limit ¢ = 2.

4. This question is going to show that, whenever we have a sequence that is defined recursively,
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we need to show that it converges, and that computing the candidates for the limit is not
enough.

Consider the sequence defined as a; = 10, a,+1 = a2 for n > 1.

(a) Show that, if the limit of (a,) exists, then it is either 0 or 1.
(b) Show that (a,) diverges to +oo.

Solution:

(a) Assume that (a,) converges, and let L denote its limit. Then, by what we saw
in worksheet 5, also (an41) converges to L. So, by the recursive relation, we have
L = L?. Then, the solutions to the equation L? — L = 0 are 0 and 1, showing the
claim.

(b) We can use induction to show that a, = 102" . As it is well known that the
geometric sequence (10™) diverges to 400, then so does (102" '), since it can be
regarded as a subsequence of (10™).

n+1
of a, so that it looks more to the sequence of a previous exercise, then use the subsequence
with odd indices.)

n
5. Compute the limit of a,, = ("—"’3> using subsequences. (Hint: first, manipulate the definition

Solution:
Write

o — n+3 "_ 14 2 "

" \n+1 B n+1

1 2n+1 1 n+1\ 2 1 -1
G2n+1 ( Jrn—i—l) ( +n—|—1> ( +n—|—1>

SO a2,41 converges to e2. Now, we argue as in Exercise 17 in the previous sheet.

so that

6. State if the following statements are true or false. If you think the statement is true, then
prove that; otherwise, provide a counterexample.

—
&

If a sequence is not bounded above, it must be increasing.

—~
=)

L — L T D D T

Any monotone sequence has a convergent subsequence.

If (ay,) has no divergent subsequence, then (a,) is convergent.

(@]

o~
jol

If (a,,) is Cauchy convergent, then also (]a,|) is Cauchy convergent.

@

If (a,) is a Cauchy sequence, then the sequence b,, = ¢ a,, ¢ # 0 is a Cauchy sequence.

—
—

If (ay,) is Cauchy, there exists € > 0 such that |a,, — a,| < € for all m,n € N.

Any sequence has a convergent subsequence.

—~~
=]

If (a,) and (b,) are Cauchy sequences, then the sequence ¢, = a, + b, is a Cauchy
sequence.
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Solution:

a) False. Take a,, = 0 if n is even and a,, = n if n is odd.

(
(b) False. Take a,, = n.

(¢) True. (a,) is a subsequence of (a,) itself. So by definition it should be convergent.

)
)
)
(d) True. It follows directly from the inequality:

||an| - |(Zm|| < |an - am|-

(e) True. A shortcut is to use that fact that, for a sequence of real numbers, being
Cauchy is equivalent to be convergent, and the statement is of course true if we
replace Cauchy with convergent. Let us now give the proof using just the definition
of Cauchy sequence.

To show that (b,) is Cauchy we must show that for any € > 0, there is N such that
for all 4,5 > N, |b; — bj| < e. Let € > 0 be given. Since (a,) is Cauchy, there is N
such that for all 4,5 > N we have

€

el

|ai —aj| <

Now for all 4,7 > N we have

€
bi = bj| = |ca; — caj| = |c| - |a; — a;j| <|c|- 7 =

]
So (by,) is Cauchy.

(f) True. A sequence is Cauchy if and only if it is convergent. So (a,) is a convergent
sequence, let a € R be its limit. Then we can find C' € R such that

la, —a] < C
for all n € N. Using the triangle inequality we have
lam — an| < |am —al +|a —a,| <2C
for all m,n € N. So it is enough to take ¢ = 2C.

(g) False. Take a,, = n.

(h) True. Since (a,) and (b,) are Cauchy sequences they must converge. By Algebra
of Limits the sequence ¢, = a,, + b, must converge, which is equivalent to ¢, being
a Cauchy sequence.

7. Show if the sequence

sin(a,—1) + 1
2

satisfies the definition of Cauchy sequence. (Hint: Use the trigonometric formulas from Ex-

ercise Sheet 1)

ay, = a1 =0
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Solution:

We have for all integers n > 2:

L. . 1
|ant1 — an| = 3 ’Sln(an) — s1n(an,1)‘ =3

9 & Qp — Gp—1 Qp + Ap—1
Sin COS
2 2
. Ap — An—1 |an - an71|
<
sm( . )‘ o]

In the last inequality we use the fact that |sin(z)| < |z| for all z € R.

IN

If we apply the above inequality n — 1 times, we obtain

\ag—a1| l*0 1
|an+1 - an| < on—1 = |;n—l | = 27 .

For all couple of integers n > m > 2, by using the triangle inequality we obtain:

n—1
|an - am| < Z |ak+1 - 0Jk| s
k=m

SO
n—1 n—m-—1 k

1 1 1
an_am|gzik:7m (
P 2" = \2

1— 1\n—m n—m

_r -G (] < 1
om 11— 1 gm—1 2 = gm—1
—_——
<1

Since the sequence (2,,%1) converges to 0, for every € > 0 there exists M, > 2 such that
for all m > M, we have ﬁ < e. Then |a, — ap| < € for all n > m > M,. We conclude
that |a, — am| < € for all n,m > M.. Therefore it follows that (a,),>1 is a Cauchy
sequence.

8. Let (a,) and (b,) be two sequences. Show the following facts.
(a) Assume that (a,) and (b,) are bounded. Prove that limsup(a, + b,) < limsupa, +
lim sup b, .

(b) Provide an example of sequences (a,) and (b,) such that the inequality in part (a) is
strict.

(c) Assume that liminfa, = 5. Show that there exists N € N such that, for any n > N,
a, > 4.

(d) Assume (by,) is defined as follows:

100 5 3|n
bp=92—-L1if3[n—1
3 if 3n —2

Compute lim sup b, liminf b,,, and exhibit a subsequence of (b,,) converging to lim sup b,
and a subsequence converging to liminf b,,.
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Solution:

(a) We have that limsupa, = lim sup{ag|k > n}, imsupb, = lim sup{bglk > n},
n—oo n—o0

and limsup(a,, 4+ b,) = lim sup{ax + bx|k > n} and all of these limits exist finite,
n—oo
as (ap), (by), and therefore (a,, + b,) are bounded.

Fix n € N and h > n. Then, a, + by, < sup{arlk > n} + b, < sup{axlk >
n} + sup{bg|k > n}, where we used the definition of sup and the fact that h > n.
Thus, sup{ag|k > n}+sup{bg|k > n} is an upper bound for {a+bx|k > n}. Assup
is the least upper bound of a set, it follows that sup{ax + bi|k > n} < sup{ap|k >
n} -+ sup{bilk > n}.

Consider (a,) = (—=1)" and (b,) = (—1)"*!. Then, limsupa,, = limsupb,, = 1, but
ayn, + b, = 0 for all n. Thus, limsup(a, + b,) =0 < 2 = limsup a,, + limsup b,,.

By definition of liminf, we have lim inf{ax|k > n} = 5. Now, we apply the
n—oo

definition of convergence to the sequence (inf{ax|k > n}) with limit 5 and € = 1.

Thus, there exist N € N such that, for every n > N, we have |inf{ag|k > n}—5| < 1.

In particular, we have inf{ax|k > n} > 5—1 = 4. In particular, we have inf{ay|k >

N} > 4. Then, by definition of inf, we have a; > 4 for every k > N.

Clearly, the sequence is bounded above by 100 and below by 0. So, lim sup and lim inf
are finite. For n > 50, we have % < 2. Thus, for every k > 50, b < 2. So, by how
the sequence is defined, for every n > 50, we have sup{bi|k > n} < 2. This shows
that limsupb,, < 2. On the other hand, since {k|k > n and 3|k — 1} C {k|k > n},
we have

1
sup{bi|k > n} > sup{bx|k > n and 3|k — 1} = sup{2 — E|k >nand 3|k —1} = 2.

So, we have limsupb, = 2. Notice that, for n > 50, the sequence sup{bi|k > n}
the sequence becomes constant with value 2. If we define ny = 3k + 1, we have that
(b, ) converges to 2, as b, =2 — ﬁ

Now, since b,, > 0 for every n, we have liminf b, > 0. We claim that the sequence
inf{bx|k > n} is constant with value 0. Indeed, we have

100
0 < inf{bglk > n} < sup{bilk > n and 3|k} = inf{7|k > nand 3|k} =0,

where the first inequality follows from the fact that (b,,) is non-negative, the second
inequality from the fact that {k|k > n and 3|k} C {k|k > n}. This shows the
claim and that liminf b, = 0. Then, if we define mj = 3, the subsequence (b, )

converges to 0, as by, = %.

9. State if the following statements are true or false. If you think the statement is true, then
prove that; otherwise, provide a counterexample.

(a) If (x,) is a sequence that converges to 0, then the series Y x, converges.
(b) Let (z,) and (y,) be two sequences such that 0 < x,, < y, for all n € N. If the series
>0 o Ty diverges, then the series 2 v, diverges.

(¢) Let () and (yn) be sequences such that z,, < y, for all n € N. If the series ) °  z,
diverges, then the series ZZOZO yn diverges.

(d) Let (z,,) and (y,) be sequences. If the series > 7z, converges and the sequence (yy,)
converges, then the series Y z,y, converges.
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Solution:

(a) False. Take x,, = 1 for example.

(b) True. Let S, := > _a, and T, :== >} yr. Then S, < T, for all n € N. Since
T, Yn > 0 for all n € N| the sequences (.5,,) and (7},) are both monotone increasing.

If 377 @y, diverges, then (S,,) is not bounded above. Since S,, < T), for all n € N,
then also (7},) is unbounded above, in particular, it cannot converge.

(c) False. Take z,, = —n and y, = - for example.
(d) False. Take for example x,, =y, = (7%”. Then lim,, ;o yn = 0, the series ZZOZO Tn

converges by the Leibniz criterion, and the series ZZOZO TnYn = ZZO:O % diverges.

10. For each of the following, determine whether the series is convergent or divergent.

(a) ZZO:O m
2n%+1
(b) Xnto3nmia

oo (="
(€) Xnm Vnt3

Solution:

(a) Define the sequence a,, = m and the sequence b, = -5;. We know that for all
n we have that a,, < b,,. We also know that the series Y b, converges. By the
comparison criterion (see Exercise 9(b)), we conclude that the series > > m
converges.

(b) Define the sequence a,, = gzzié,

series is divergent.

this sequence does not converge to zero. So the

(¢c) Define the sequence a,, = \/ﬁ This sequence converges to zero and is monotone.

By the Leibniz criterion alternating series we can then directly conclude that the

e ()"
series y " | s converge.

11. For each of the following, determine whether the series is convergent or divergent.

sin(2n?
(a‘) Z’(:LOZO 7Lg+3)

0 —10)™
(b) S0 s
() Y2 o (~1)" oty

Solution:

(a) To figure this out define the new series by

>, |sin (2n?)
nZ:O n? +3
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We know that absolute converge implies convergence. So if the above series con-

.. . in(2n?
verges, then the original series Z;'LO:O Slzg ;;) must also converge. Define the se-
in(2n?
quence a,, = 82(2_:;)‘ and the sequence b,, = % We know that a,, < b,, for all

n > 1. We also know that the series ZZOZO b, converges; by the comparison criterion
sin(?nz)
n243

(see Exercise 9(b)), we conclude that the series Y~ converge.

Applying the ratio test

10
=— <1
16

So this series is convergent by Alembert’s criterion.

Let x,, := (—1)"15. The series diverges. Indeed, if it were convergent, then (z,)
would be convergent and have limit 0. Then also lim,_, |2,| would be 0. This is
in contradiction with

lim |z, = lim ”3:17&0.

n— o0 n—oo 1 +

12. For each of the following, determine whether the series is convergent or divergent.

(a) 32

(b) X2
(c) >k

jes} 1
n=1 n(n2+3)
[e'e] vnbd

n=1 n3+1

(k!)?
k=1 2k)‘

(a)

Solution:

‘We observe that
1

1
RN e R

Therefore, the series is convergent by the comparison criterion (see Exercise 9(b)),
. o'} 1 3
because the series » ., 7 Converges as ; > 1.

S
wjw =

‘We observe that
vVnd 1
W+l b + -

w\m‘ =

is very close to ; , so we expect that the series does not converge, because the

series Y | dlverges We also observe that —r for all n € N. Hence we try
2 2

to use the comparison criterion for the series we are studymg We observe that

1
B > (1)

1
n

IQ‘H
3
[S[Sy =

holds if and only if

%\H‘ =
4
%w‘ =
IA
—
©

Page 10




Since the sequence (% + %) converges to 0, there exists N > 0 such that (2)

n?2 n2
holds for all n > N. Then also (1) holds for all n > N. Hence, we conclude that the

. V/nb . . . . .
series > 0, -7 diverges by the comparison criterion (see Exercise 9(b)), because

the series > > | L diverges.

(¢c) We observe that

(k2 ko(k—1)---1 _k—l k—j_k_l , N
0§(2k)!_2k.(2k1)...(k+1)—H2kj_Hl+kkj§(2>

=0 =0

because ﬁ > 1. Therefore, the series is convergent by the comparison criterion

(see Exercise 9(b)), because the series Y, ; (%)k converges.

13. (Multiple choice) The series

>/ 1\"
()
is
(a) divergent.
(b) converges to 2 + /2.
(c) converges to 2 — /2.
)

(d) cannot be determined.

Solution:

(b) is correct. We use the identity

¥V —1=(a-D T +a" 24+ 41)

to see that Nl
n 1 _
sy (L))
1
n=0 \/5 ﬁ -1
So

1 2
lim Sy = — = V2 =V2(V241)=2+V2

i cos(n)
e
converges absolutely.

converges, but not absolutely.

diverges to +oc.

diverges to —oc.
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Solution:

(b) is correct. The point of this problem is really just to acknowledge that it is in fact an
alternating series. To see this we need to acknowledge that,

cos(nm) = (—=1)"

and so the series is really,

— cos(nm) o= (-1)"
v

1

Now define a sequence b,, = - The series is convergent, if lim, ., b, = 0 and b, is

monotone. We see that indeed:

1
lim b, = lim — =0
n—oo n—oo n

and also b, is a decreasing sequence. But on the other hand
oo
n=1

So the series is convergent, but not absolutely.

cos(nm)| Ooi: ~
Vo P v i

15. Terminate the proof that we started in class showing the convergence of >~ (_l.l)l. This is
what we have proven in class and that you can assume:

(a) the subsequence (yi) of (sn),

2k+1 (_1)2
= S = —_—
Yk 2k+1 ;:0 i

is strictly increasing;

(b) (yg) is bounded; in particular (yi) converges to a limit y € R.

(Hint: Show that (s, ) is a Cauchy sequence. Use the fact that since (yi) converges, then it
is Cauchy, and that sof — ﬁ = Sok+1.)

Solution:

Since (yx) converges, in particular it is a Cauchy sequence. Hence for any € > 0 there
exists k. € N such that for all k1, ks € N, ky, ko > ke,

|yk1 - yk2| <€

But this is equivalent to saying that for any e > 0 there exists n. € N such that for all
nh,nh € N, np,nh odd, nf,nh > nl,

|Sny — spy| <€

We have to find n. such that
[Sny — Sno| < €.
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holds for any n1,n2 > n. and not just the odd ones, for any fixed value of e.
If ny is even and ns is odd, then we can write

1 1
ISnl - Snz' = |Sn1,1 + Tlil - Sn2| < Tlil + |S7l1*1 - 5n2|,

where the inequality follows from the triangle inequality. If ni,ny are even, then we can
write

1 1
1Sy = Sny| = [Sny—1 + nil — Spy—1t n72| < nil + 772 +[8ny—1 = Sny—1l,

where the inequality follows from the triangle inequality.
Fix € > 0. Let n/ € N be such that -5, < . Let n!” := n’% be the index in the definition
of Cauchy sequence for (yy) with 5. Define n. = maxn,n;’. Then for natural numbers

n,m,r,t > ne, r,t odd, we have that

If ny is even and ns is odd, ni,ns > ne then we can write
Sn; — Sny| = |Spy—1+ — —5 — 4+ |sp;—1— 5 -+ -<e
ni na ni 1 no 1 ni na 4 2

If ni,ny are even, then we can write

1 1 1 1 € € €
|3n1 _3n2| = |5n1—1 + 77171 — Spo—1 + TL72| < 77,71 + ’I’Lig + ‘Snl—l _5n2—1| < E + Z + 5 = €.
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