Analysis I (English) | -
Roberto Svaldi and Stefano Filipazzi c l-

Fall Semester 2021-2022

Analysis 1 - Exercise Set 5

Remember to check the correctness of your solutions whenever possible.
To solve the exercises you can use only the material you learned in the course.

1. If a sequence (z,,) converges, then its limit is unique.

Solution: Let (x,,) be a convergent sequence, and assume that both z,y € R are limits
of this sequence. We need to conclude that = = y.

By definition of convergence, for every 0 < ¢ € R there are n?,n? € N such that for all
n > n? we have:

|z —z,| <€
and for all n > n¥ we have
ly —an| <e.

So, if we set n. = max{n? n¥}, then both of the above inequalities hold for all integers
n > n.. In particular, for such n, we have

ly—z|=ly—an+an —a|<|y—an|+|zs—a[<ete=2¢

triangle inequality

Since, this holds for all 0 < € € R, we obtain that y = z.

2. Assume that lim x,, = z € R. Prove the following fact: for any [ € N, lim x,; exists and
n— oo n—o0
lim zpy =z
n—oo

Solution: Let us fix [ € N. Let us define the sequence (y,), Yn = Zn4;. Then, we need
to prove that lim, oo ¥ = lim, oo . If I = 0, then there is nothing to prove, since
Ty = Yn, Vn € N. Hence, we can assume that [ > 0. By definition of limit, for any € > 0
there exists n. > 0 such that

Vn > n., then |z, — x| < e.

As x, = yn_;, then
Vn > nl, then |y, — x| <e.

Hence, we can rewrite the above by saying that Vn > n. — [, then |y, — 2| < . Hence,
taking n. == n. — [, we see that x satisfies the definition of limit for y,,.

3. Let (a,) be a sequence. Specify if the following statements are true or false. If you think
that the statement is true, you should prove it, otherwise, provide a counterexample to the
statement.



lim a, =0,
n— oo

nh—{r;o(a” sin(n)) = 0.

(b) If (ay) is bounded, then

nhﬁngo(anef )=0.

(c) If

lim a, =0,
n—oo

then the sequence b,, := a,e” is unbounded.

Solution:

(a) True. Note —a,, < a, sin(n) < a, for all n, as the sin function is bounded in [—1, 1].
The result follows from applying the Squeeze Theorem.

(b) True. By the boundedness of the sequence 3C > 0 s.t. —Ce™ < ane™™ < Ce ™.

The result follows from applying the Squeeze Theorem, as lim e~ = 0.
n—oo

(¢) False. Take a, = ¢~ ™. Then b, =1, Vn € N.

4. Compute the following limits:
on _3n

3n+41

®) o,
(b) nlgrolo n® (1 — cos(+)) sin(1)

n

(Hint: Use the fact that h_I)Il % =1 and lim cos (i) =1.)

™ m—00 m
. sin?(n)
© B
(d) lim n(v/n*+6n+3 —n?)
n— o0
Solution:
(a) , )
e GO (Lt B C L
im ———0 = lim —2—— = lim —=———;.
The geometric sequences (2)" and (4)" converge to 0, as their ratio is strictly

between 0 and 1. Thus, the numerator converges to —1, and the denominator to 1;
since the limit of the denominator is not zero, the ratio converges to the ration of
the limits which is —1.

(b) We use the equalities

w (3) -1 )= (oo () (e ()
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to get

3 1\ . /1 , 1\ 'sin® (2) 1
lim n° [ 1—cos| — sin({— )= lim (1-+cos| — 73" =,
n— o0 n n n—o0 n n— 2

where we use the two facts given in the hint to get that the limit of the first factor
is % and of the second factor is 1.

(¢c) We have
sin®n 1
<
2n T 2n
.2
sin” n O

and by Squeeze Theorem lim,, o *57" =

0<

()

VAf ¥ 6n+ 3+ n?
lim n(v/n* 4+ 6n+3 —n?) = lim n(v/n4 4 6n+ 3 —n?) nAontotn
n—o00 n— o0 ~/n4+6n+3+n2

. n(n*+6n+3—n?)

= lim
n—oo /4 4 6n + 3 + n?
n(6n + 3) 6

= lim - =3

n—oon2(,/1+6/n3 +3/nt+1) 2

5. Let (ay) be a sequence. Specify if the following statements are true or false. If you think
that the statement is true, you should prove it, otherwise, provide a counterexample to the
statement.

(a) If
lim |2 — g,
n—oco | Qy
then (a,) converges.
(b) If
lim Antl | _ 1,
n—o0 ap
then (a,) diverges.
Solution:
(a) False, take a,, = n.
(b) False, take for example a, = 1/n. We have
lim Antl) _ lim ' =
n—oo Ap n—oo |n + 1
but lim 1 =0.
n—oo

6. Determine if the sequence (a,) is convergent or not in the following cases.

1. a,=2

en”
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_10m
2. QAp = “ar
_ n’ll
3. Ay = o
_ _n!
4. a, = T
Solution:

1. We compute

ant1| n+1e” _ n+11
a, | el n  n e
Hence, lim,,_, I;—:l = % < 1 and the sequence (a,,) is convergent by the quotient
criterion.
2. We compute
ans1| 10" nl 10
an | (m+DI0"  n41
An+1

0 < 1 and the sequence (a,,) is convergent by the quotient

Hence, lim,,

Qn

criterion.
3. We compute

_(n+1)ntten

An 41
Qn

nn" e

1+t 1 (n+1
e

Y e

en+1 nn

An+1

ol lim,, 0o m + 1 = 400 and the sequence (a,) is unbounded

Hence, lim,,

by the quotient criterion.

4. We compute

(n+1)! .
1| _ et (n4 D) nted
an 2 (e peHet ol
_ (n41) n™ e n+1 n™ 1 1 1
— ] (n+1)n+l en;l - n4+1 (n+1)" e% - (1+%)n 61/2'

) is convergent because ((1 + %)n) is a convergent se-

Then, the sequence ( Soti

quence with limit # 0. Then

= i ! L_ L
_nl—{%o (1+%)n 61/2_63/2

Ap+1
G,

lim

n—oo

and the sequence (a,) is convergent by the quotient criterion.

7. Determine if the following sequences converge or not. If the sequence is convergent, determine
its limit.

Q.,2
(a) an = fonr5mm
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Solution:
(a) Since the numerator and the denominator consist of polynomials of degree 2, then
the sequence is convergent. We have
im 73712_1 = lim 7712 3_"12) _3
n—oo 10n + 5n2 B n—oo N2 (% + 5) B 5
(b) We use the quotient criterion:
| | 32(71«{»1)
p= lim =2t — jip L = 32 iy =3>>1
n— o0 |an| n— o0 3n n—oo N +
Since p > 1 the sequence is divergent.
(¢c) We use the quotient criterion:
+1)°
= lim Ln—&-ﬂ = lim (ZHE 1 lim n’+2n 1 _1 1
p_n—>oo ‘an| I res ;Lj D e n2 o
Since p < 1 the sequence (a,,) is convergent and the limit is 0.

8. Compute the following limits:
— 9
(a) lim 7= cos (n?)
sin(n 4+ 1) —sin(n — 1)
im
n—oo cos(n + 1) + cos(n — 1)
(Hint: Use trigonometric formulas from Ezxercise Sheet 1)
sin(vn3 +n? +1
(¢) lim ( g )
n—oo n3+n2+1

(b)

Solution:

(a) First consider the sequence b,, = ?—i By induction we can show that 7% > n* for all
n > 6 (so, the base case will be n = 6). The base case n = 6 is satisfied by direct
inspection. Now suppose that for some N > 6 we know that 7V > N4. We have

(N+1)* <2N* < 2.7V < 7N+

as the first inequality is true for all N > 6; induction proof is complete. Then,

n3<n3 (2)<n3 n3<n3 (2)<n3 1<n3 (n?) <
—— < ——cos(n — = —— < ——cos(n — = —— < —cos(n
™ - nt — 7" —nt n = -

S|

By the Squeeze Theorem we see that lim a, = 0.
n—oo
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(b) We use the trigonometric formulas in Exercise Sheet 1.

sin(n + 1) — sin(n — 1) ~ im 2 cos(n) sin(1)

=tan(l) .
60 cos(n+ 1)+ cos(n —1) n—oo 2cos(n) cos(1 an(1)

~—

(¢c) We have
1 3 2 1
lim sm( n—l—n—&-):O7
n—00 nd4+n2+1

because ‘sin(\/n?’ +n2 + 1)‘ <1forallneN, and

I L
n1—>Holon3+n2+1 o

9. Give an example of a sequence (z,,) such that the sequence y,, = z,+1 — =, converges to 0
but (z,) itself is divergent.

Solution:

Take the sequence z, = /n, n € N. 1z, is clearly divergent but the sequence y, =

vn+ 1 —+/n converges to zero:

. . vn+1+4++/n ) n+l—n
lim y,= lim y,———== lim ———= =0
n—-+4o0 n—oo 1/n+1+\/ﬁ n—o00 ./n+1+\/ﬁ

10. Prove that if lim z,, = +o0 and (y,) bounded from below, then lli_}m (Zp + Yyn) = +00.

n—oo
Show that this is true also if 400 is replaced with —oo and (y,,) is assumed to be bounded

from above.

Solution:

Let C be a lower bound for the values of (y,), that is, C < y,, ¥n € N. Now, we need to

show that, for every M > 0, there exists N € N such that, if n > N, then z, +y, > M.

Fix M > 0, and consider M + |C| > 0. As lim z, = 400, there exists N such that, if
n—oo

n > N, then 2, > M +|C|. Then, for every n > N, we have x,, +y, > M+ |C|+C > M.
Thus, z,, + ¥, — 400 as n — oo as required.

Now, we address the second part of the question. Let C' be an upper bound for the
values of (y,), that is, C >y, Vn € N. Then z,, + y, <z, + C — —o0 as n — oo and
thus z,, + ¥y, — —00 as n — oo as required.

11. Prove that if z,, # 0, for allm € Nand lim [ *2-| = +00 then (z,,) is unbounded and, thus it
n—oo Tn—

x
diverges. Construct examples of sequences (x,,) satisfying the conditions above and such that
lim z, = 400 (resp. lim z, = —o0).

n—oo n—oo
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Solution: By definition of divergence to +oo, we have the following: for every M > 0,
there exists N € N such that, if n > N, then x—:’ > C. Now, let C = 2 and fix N

accordingly. Then, for every n > N, by clearing denominators, we have |z,| > 2|z,_1]|.

By induction, we show the following: for every n > N, |z,| > 2" N|zx|. We check the
base case n = N: |zy| > |zn| = 20zn| = 2V N|zy|. Now, fix n > N, and assume
|z,,| > 2" N|zy|. By what we showed in the previous paragraph, as n +1 > N, we
have |z,41| > 2|x,|. Applying the inductive hypothesis to |x,|, we get |z,11] > 2|z,| >
2.2 Nz | =271V |z y|. So, the inductive step is settled.

Since |zx| # 0 and lim 2™ = 4oc, we get that lim 2" VN|zy| = +oco. Since |z,| >
m—r 00 n—oQ
2n=N|z x| for every n > N, it follows that lim |z,| = +oo. In particular, (z,) is not
n— oo
bounded.

n
Examples are z,, = e” or x, = —e

n" ! !
or x, = n! or x,, = —n! among others.

12. Consider the recursive sequence a,4+1 = 7 — —, with initial datum a; = 4. Compute the
first three values. Then, show that it is bounded by 2 and 5, that it is increasing, and then
compute the limit.

Solution:

The first values are 4, 4.5 and 4.778. We prove that it is bounded by 2 and 5 using
induction. The claim is true for a;. Now we have tho show that if a,, is bounded by 2
and 5, the same is true for a,1; this is done by explicit computation as follows:

10 10 10 10
U1 =T— — <T—— =5, a1 =T— —>T——=2.
an 5 Ay, 2

To show that the sequence is increasing, we have to show that a,, — a,1 is non-positive
for all n. This difference is equal to a,, — 7 + %, and it is negative for all a,, between 2
and 5 (solve the inequality = — 7 + % < 0). Since a,, is always between 2 and 5, we get
the claim.

By monotone convergence we now know that the limit exists. Let us call it L. Taking the
limit on both side of the equality a,4+1 =7 — ==, we get that

10
L=7—-—
L
So L is equal either to 2 or to 5. But now we recall that the sequence is increasing, and

starts at 4, so L = 5.

13. Consider the recursive sequence a,11 = v/8a,, — 7, with initial datum a; = 4. Show that it is
bounded by 1 and 7, that it is increasing, and then compute the limit.

Solution:

Same strategy as in Exercise 12. We prove by induction that the sequence is bounded by
1 and 7. We observe that a; = 4 is between 1 and 7. We assume that 1 < a,, <7 and we
prove the same inequalities for a,,+1 as follows:

Uni1 = V8ay —T<VS8-T—T=7, Gni1=V8a, —7>/8-1-7=1.
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The sequence is increasing if a, 11 — a, is non-negative. We observe that

2 2 2
Uni1—0p  8ap, —7—ay

Ap+1 — Gp =
Ap41 + ap, Ap+1 + [e7%

is positive for a,, between 1 and 7. Hence, the sequence is increasing.

We know that the limit exists by monotone convergence. Let L = lim a,. Then by
n—oo

taking the limit of both sides of the equation a2, = 8a,, — 7 we get L? = 8L — 7. Hence,
L € {1,7}. Since a,, is increasing and a; = 4, we conclude that L = 7.

14. Find the limit for x,, = %,xo = 1. [Hint: use the fact |sin(x)| < |z| for all ]

Solution:
Note |z,| = |Si“(9”2”—1)| < |#%51|. Thus, by induction, we have that |z,| < ‘;2' = 5 for
all n. Since lim 2% = 0, by the squeeze theorem, we conclude lim x,, = 0.

n— 00 n—0

15. Let (an), (bn) be sequences. State if the following statements are true or false. If you think
that the statement is true, you should prove it, otherwise, provide a counterexample to the
statement.

a) If (a,) is monotone, then lim a, exists or lim, . a, = +00 or lim, , a, = —oc.

( ) n—oo
(b) If (a,) and (b,) are monotone, then the sequence ¢, = a,, + b, is monotone.
¢) If lim |an41 — an| =0, then (a,) is a bounded sequence.
n—oo
)
)

(
(d

(e) If (ay) has no convergent subsequence, then (a,) is unbounded.

An unbounded sequence can have a convergent subsequence.

Solution:

(a) True. Indeed, if (a,) is monotone and bounded, then it converges and hence lim a,
n—oo

exists. If it is monotone increasing and unbounded, then it approaches +o0o and so
lim a, = 4o00. If it is monotone decreasing and unbounded, then it approaches

n—oo
—o0 and so lim a, = —oo.
n—oo
(b) False. For example, take a,, = 2n + (—1)" and b, = —2n. Then (a,) is monotone

increasing because
U1 — ap =2+ 1)+ (=1)" —2n — (~=1)" =24+ 2(-1)"T >2 -2 =0,
and (b,,) is monotone decreasing. But ¢, = a,, + b, = (—1)" is not monotone.

(¢c) False. Take for example a,, = y/n for all n € N. Then

B (Wt I-vn)(Vntl4yn) 1
a4t = @nl = V41—V = VaTit v RV

converges to 0 but (ay) is not bounded.
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(d) True. Take for example

1 if n is even.

{n2 if n is odd,
an =

then (agg) is a convergent subsequence, while a,, is divergent.

(e) True. This statement is the contrapositive of the Bolzano—Weierstrass theorem.

16. Compute the following limits:

(a) lim (1—1—%)”

n— oo
n n+1 n41
. +1 . n+2
(int: .= lim (1+4)" = Jlim &30, ande= lim (1+5k) " = lim £5)
_ 1\
©) Jim (1= )
~1
_ . l —n nn
(Hint: e~ ( hm ) = nh_}ng@ ((1 +1) ) = nh—>néo ‘(n+1)n)

(c) lim (1--)

n— oo

(Hint: (1- %) = (12 B (%)2))

Solution:

(a) Later in the course you will learn to do this with a change of variables; now you can

do as follows

, 2\" . /mn+2\" . (n+2\"[(n+2\ [n+1\"!
Iim (1+ — = lim = lim
n n—o0 n n—o0 n n—+2 n+1

n—r oo

oI\ n+2\" n+1 _ 1\" 1\ fn+1
= lim = lim (1+ — 14+
n—o0 n n—+1 n -+ 2 n— o0 n n—+1 n -+ 2
(b)
" -1 1 1
lim <1—) = lim n — = -
n— oo n n—oo n (1+n£1) e

lim <1—12> = lim (1—1> <1+1> =1
n— oo n n— oo n n

We are going to compute its limit using subsequences

17. Let a,, = (14 2)".
(a) Compute lim ag,,.
n—oo

(b) Show that a,, < an11.
(c) Use subsequences, squeeze theorem and monotone convergence to show that the sequence

(ayn) is convergent and its limit.
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Solution:
(a) We have
1 n\ 2
lim ag, = lim <<1—|—> > =2,
n—o00 n—o00 n

(b) This is very similar to the proof that

1 n 1 n+1
<1+) <(1+ >
n n—+1

You can find it in any analysis book, and in the lecture notes (Example 4.51, Intro-
duction of e).

(c) We already know that the subsequence as, converges to e2. Point (b) implies that
aon < Gont1 < Aopt2. We can now use the squeeze theorem and point (a) to show
that the sequence (ag, 1) converges to e? as well. In particular

sup{az, : n € N} = sup{ag,41 : n € N} = ¢?

because both sequences (as,) and (as,+1) are monotone increasing and converge.
Then (a,,) is bounded above and

sup{a, : n € N} = max{sup{ag, : n € N},sup{ag,1:n € N}} = &%

Since the sequence (a,,) is monotone increasing and bounded above it converges by

monotone convergence and the limit, which is the supremum, is e2.
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