
Analysis I (English)
Roberto Svaldi and Stefano Filipazzi
Fall Semester 2021–2022

Analysis 1 - Exercise Set 5

Remember to check the correctness of your solutions whenever possible.

To solve the exercises you can use only the material you learned in the course.

1. If a sequence (xn) converges, then its limit is unique.

Solution: Let (xn) be a convergent sequence, and assume that both x, y ∈ R are limits
of this sequence. We need to conclude that x = y.

By definition of convergence, for every 0 < ε ∈ R there are nxε , n
y
ε ∈ N such that for all

n ≥ nxε we have:

|x− xn| ≤ ε

and for all n ≥ nyε we have

|y − xn| ≤ ε.

So, if we set nε := max{nxε , nyε}, then both of the above inequalities hold for all integers
n ≥ nε. In particular, for such n, we have

|y − x| = |y − xn + xn − x| ≤ |y − xn|+ |xn − x|︸ ︷︷ ︸
triangle inequality

≤ ε+ ε = 2ε

Since, this holds for all 0 < ε ∈ R, we obtain that y = x.

2. Assume that lim
n→∞

xn = x ∈ R. Prove the following fact: for any l ∈ N, lim
n→∞

xn+l exists and

lim
n→∞

xn+l = x.

Solution: Let us fix l ∈ N. Let us define the sequence (yn), yn := xn+l. Then, we need
to prove that limn→∞ yn = limn→∞ xn. If l = 0, then there is nothing to prove, since
xn = yn, ∀n ∈ N. Hence, we can assume that l > 0. By definition of limit, for any ε > 0
there exists n′ε > 0 such that

∀n ≥ n′ε, then |xn − x| < ε.

As xn = yn−l, then
∀n ≥ n′ε, then |yn−l − x| < ε.

Hence, we can rewrite the above by saying that ∀n ≥ n′ε − l, then |yn − x| < ε. Hence,
taking nε := n′ε − l, we see that x satisfies the definition of limit for yn.

3. Let (an) be a sequence. Specify if the following statements are true or false. If you think
that the statement is true, you should prove it, otherwise, provide a counterexample to the
statement.



(a) If
lim
n→∞

an = 0,

then
lim

n→∞
(an sin(n)) = 0.

(b) If (an) is bounded, then
lim

n→∞
(ane

−n) = 0.

(c) If
lim
n→∞

an = 0,

then the sequence bn := ane
n is unbounded.

Solution:

(a) True. Note −an ≤ an sin(n) ≤ an for all n, as the sin function is bounded in [−1, 1].
The result follows from applying the Squeeze Theorem.

(b) True. By the boundedness of the sequence ∃C > 0 s.t. −Ce−n ≤ ane
−n ≤ Ce−n.

The result follows from applying the Squeeze Theorem, as lim
n→∞

e−n = 0.

(c) False. Take an = e−n. Then bn = 1, ∀n ∈ N.

4. Compute the following limits:

(a) lim
n→∞

2n−3n
3n+1

(b) lim
n→∞

n3
(
1− cos( 1

n )
)

sin( 1
n )

(Hint: Use the fact that lim
m→∞

sin( 1
m )

1
m

= 1 and lim
m→∞

cos
(

1
m

)
= 1.)

(c) lim
n→∞

sin2(n)
2n

(d) lim
n→∞

n(
√
n4 + 6n+ 3− n2)

Solution:

(a)

lim
n→∞

2n − 3n

3n + 1
= lim

n→∞

3n(( 2
3 )n − 1)

3n(1 + 1
3n )

= lim
n→∞

( 2
3 )n − 1

1 +
(
( 1
3

)n .
The geometric sequences

(
2
3

)n
and

(
1
3

)n
converge to 0, as their ratio is strictly

between 0 and 1. Thus, the numerator converges to −1, and the denominator to 1;
since the limit of the denominator is not zero, the ratio converges to the ration of
the limits which is −1.

(b) We use the equalities

sin2

(
1

n

)
= 1− cos2

(
1

n

)
=

(
1− cos

(
1

n

))(
1 + cos

(
1

n

))
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to get

lim
n→∞

n3
(

1− cos

(
1

n

))
sin

(
1

n

)
= lim

n→∞

(
1 + cos

(
1

n

))−1 sin3
(
1
n

)
n−3

=
1

2
,

where we use the two facts given in the hint to get that the limit of the first factor
is 1

2 and of the second factor is 1.

(c) We have

0 ≤ sin2 n

2n
≤ 1

2n

and by Squeeze Theorem limn→∞
sin2 n
2n = 0.

(d)

lim
n→∞

n(
√
n4 + 6n+ 3− n2) = lim

n→∞
n(
√
n4 + 6n+ 3− n2)

√
n4 + 6n+ 3 + n2√
n4 + 6n+ 3 + n2

= lim
n→∞

n(n4 + 6n+ 3− n4)√
n4 + 6n+ 3 + n2

= lim
n→∞

n(6n+ 3)

n2(
√

1 + 6/n3 + 3/n4 + 1)
=

6

2
= 3.

5. Let (an) be a sequence. Specify if the following statements are true or false. If you think
that the statement is true, you should prove it, otherwise, provide a counterexample to the
statement.

(a) If

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1,

then (an) converges.

(b) If

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1,

then (an) diverges.

Solution:

(a) False, take an = n.

(b) False, take for example an = 1/n. We have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ n

n+ 1

∣∣∣∣ = 1

but lim
n→∞

1
n = 0.

6. Determine if the sequence (an) is convergent or not in the following cases.

1. an = n
en .
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2. an = 10n

n!

3. an = nn

en

4. an = n!

nne
n
2

Solution:

1. We compute ∣∣∣∣an+1

an

∣∣∣∣ =
n+ 1

en+1

en

n
=
n+ 1

n

1

e
.

Hence, limn→∞

∣∣∣xn+1

xn

∣∣∣ = 1
e < 1 and the sequence (an) is convergent by the quotient

criterion.

2. We compute ∣∣∣∣an+1

an

∣∣∣∣ =
10n+1

(n+ 1)!

n!

10n
=

10

n+ 1
.

Hence, limn→∞

∣∣∣an+1

an

∣∣∣ = 0 < 1 and the sequence (an) is convergent by the quotient

criterion.

3. We compute∣∣∣∣an+1

an

∣∣∣∣ =
(n+ 1)n+1

en+1

en

nn
=

1

e

(n+ 1)n+1

nn
=

1

e

(
n+ 1

n

)n

(n+ 1).

Hence, limn→∞

∣∣∣an+1

an

∣∣∣ = limn→∞ n+ 1 = +∞ and the sequence (an) is unbounded

by the quotient criterion.

4. We compute

∣∣∣∣an+1

an

∣∣∣∣ =

(n+1)!

(n+1)n+1e
n+1
2

n!

nne
n
2

=
(n+ 1)!

(n+ 1)n+1e
n+1
2

· n
ne

n
2

n!

=
(n+ 1)!

n!
· nn

(n+ 1)n+1
· e

n
2

e
n+1
2

=
n+ 1

n+ 1
· nn

(n+ 1)n
· 1

e
1
2

=
1(

1 + 1
n

)n · 1

e1/2
.

Then, the sequence
(∣∣∣an+1

an

∣∣∣) is convergent because
((

1 + 1
n

)n)
is a convergent se-

quence with limit 6= 0. Then

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

1(
1 + 1

n

)n · 1

e1/2
=

1

e3/2
< 1

and the sequence (an) is convergent by the quotient criterion.

5.

7. Determine if the following sequences converge or not. If the sequence is convergent, determine
its limit.

(a) an = 3n2−1
10n+5n2
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(b) an = 32n

n

(c) an = (−1)nn2

2n

Solution:

(a) Since the numerator and the denominator consist of polynomials of degree 2, then
the sequence is convergent. We have

lim
n→∞

3n2 − 1

10n+ 5n2
= lim

n→∞

n2
(
3− 1

n2

)
n2
(
10
n + 5

) =
3

5
.

(b) We use the quotient criterion:

ρ = lim
n→∞

|an+1|
|an|

= lim
n→∞

32(n+1)

n+1

32n

n

= 32 lim
n→∞

n

n+ 1
= 32 > 1.

Since ρ > 1 the sequence is divergent.

(c) We use the quotient criterion:

ρ = lim
n→∞

|an+1|
|an|

= lim
n→∞

(n+1)2

2n+1

n2

2n

=
1

2
lim
n→∞

n2 + 2n+ 1

n2
=

1

2
< 1.

Since ρ < 1 the sequence (an) is convergent and the limit is 0.

8. Compute the following limits:

(a) lim
n→∞

n3

7n cos
(
n2
)

(b) lim
n→∞

sin(n+ 1)− sin(n− 1)

cos(n+ 1) + cos(n− 1)

(Hint: Use trigonometric formulas from Exercise Sheet 1 )

(c) lim
n→∞

sin
(√
n3 + n2 + 1

)
n3 + n2 + 1

Solution:

(a) First consider the sequence bn = n3

7n . By induction we can show that 7n ≥ n4 for all
n ≥ 6 (so, the base case will be n = 6). The base case n = 6 is satisfied by direct
inspection. Now suppose that for some N ≥ 6 we know that 7N ≥ N4. We have

(N + 1)4 < 2N4 < 2 · 7N < 7N+1,

as the first inequality is true for all N ≥ 6; induction proof is complete. Then,

−n
3

7n
≤ n3

7n
cos(n2) ≤ n3

7n
=⇒ −n

3

n4
≤ n3

7n
cos(n2) ≤ n3

n4
=⇒ − 1

n
≤ n3

7n
cos(n2) ≤ 1

n
.

By the Squeeze Theorem we see that lim
n→∞

an = 0.
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(b) We use the trigonometric formulas in Exercise Sheet 1.

lim
n→∞

sin(n+ 1)− sin(n− 1)

cos(n+ 1) + cos(n− 1)
= lim

n→∞

2 cos(n) sin(1)

2 cos(n) cos(1)
= tan(1) .

(c) We have

lim
n→∞

sin
(√
n3 + n2 + 1

)
n3 + n2 + 1

= 0 ,

because
∣∣∣sin(√n3 + n2 + 1

)∣∣∣ ≤ 1 for all n ∈ N, and

lim
n→∞

1

n3 + n2 + 1
= 0 .

9. Give an example of a sequence (xn) such that the sequence yn = xn+1 − xn converges to 0
but (xn) itself is divergent.

Solution:

Take the sequence xn =
√
n, n ∈ N. xn is clearly divergent but the sequence yn =√

n+ 1−
√
n converges to zero:

lim
n→+∞

yn = lim
n→∞

yn

√
n+ 1 +

√
n√

n+ 1 +
√
n

= lim
n→∞

n+ 1− n√
n+ 1 +

√
n

= 0.

10. Prove that if lim
n→∞

xn = +∞ and (yn) bounded from below, then lim
n→∞

(xn + yn) = +∞.

Show that this is true also if +∞ is replaced with −∞ and (yn) is assumed to be bounded
from above.

Solution:

Let C be a lower bound for the values of (yn), that is, C ≤ yn, ∀n ∈ N. Now, we need to
show that, for every M > 0, there exists N ∈ N such that, if n ≥ N , then xn + yn ≥ M .
Fix M > 0, and consider M + |C| > 0. As lim

n→∞
xn = +∞, there exists N such that, if

n ≥ N , then xn ≥M + |C|. Then, for every n ≥ N , we have xn +yn ≥M + |C|+C ≥M .
Thus, xn + yn → +∞ as n→∞ as required.

Now, we address the second part of the question. Let C be an upper bound for the
values of (yn), that is, C ≥ yn ∀n ∈ N. Then xn + yn ≤ xn + C → −∞ as n→∞ and
thus xn + yn → −∞ as n→∞ as required.

11. Prove that if xn 6= 0, for all n ∈ N and lim
n→∞

| xn

xn−1
| = +∞ then (xn) is unbounded and, thus it

diverges. Construct examples of sequences (xn) satisfying the conditions above and such that
lim

n→∞
xn = +∞ (resp. lim

n→∞
xn = −∞).
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Solution: By definition of divergence to +∞, we have the following: for every M > 0,

there exists N ∈ N such that, if n ≥ N , then
∣∣∣ xn

xn−1

∣∣∣ ≥ C. Now, let C = 2 and fix N

accordingly. Then, for every n ≥ N , by clearing denominators, we have |xn| ≥ 2|xn−1|.
By induction, we show the following: for every n ≥ N , |xn| ≥ 2n−N |xN |. We check the
base case n = N : |xN | ≥ |xN | = 20|xN | = 2N−N |xN |. Now, fix n ≥ N , and assume
|xn| ≥ 2n−N |xN |. By what we showed in the previous paragraph, as n + 1 ≥ N , we
have |xn+1| ≥ 2|xn|. Applying the inductive hypothesis to |xn|, we get |xn+1| ≥ 2|xn| ≥
2 · 2n−N |xN | = 2n+1−N |xN |. So, the inductive step is settled.

Since |xN | 6= 0 and lim
m→∞

2m = +∞, we get that lim
n→∞

2n−N |xN | = +∞. Since |xn| ≥
2n−N |xN | for every n ≥ N , it follows that lim

n→∞
|xn| = +∞. In particular, (xn) is not

bounded.

Examples are xn = en
n

or xn = −enn

or xn = n! or xn = −n! among others.

12. Consider the recursive sequence an+1 = 7 − 10
an

, with initial datum a1 = 4. Compute the
first three values. Then, show that it is bounded by 2 and 5, that it is increasing, and then
compute the limit.

Solution:

The first values are 4, 4.5 and 4.778. We prove that it is bounded by 2 and 5 using
induction. The claim is true for a1. Now we have tho show that if an is bounded by 2
and 5, the same is true for an+1; this is done by explicit computation as follows:

an+1 = 7− 10

an
< 7− 10

5
= 5, an+1 = 7− 10

an
> 7− 10

2
= 2.

To show that the sequence is increasing, we have to show that an − an+1 is non-positive
for all n. This difference is equal to an − 7 + 10

an
, and it is negative for all an between 2

and 5 (solve the inequality x − 7 + 10
x < 0). Since an is always between 2 and 5, we get

the claim.

By monotone convergence we now know that the limit exists. Let us call it L. Taking the
limit on both side of the equality an+1 = 7− 10

an
, we get that

L = 7− 10

L

So L is equal either to 2 or to 5. But now we recall that the sequence is increasing, and
starts at 4, so L = 5.

13. Consider the recursive sequence an+1 =
√

8an − 7, with initial datum a1 = 4. Show that it is
bounded by 1 and 7, that it is increasing, and then compute the limit.

Solution:

Same strategy as in Exercise 12. We prove by induction that the sequence is bounded by
1 and 7. We observe that a1 = 4 is between 1 and 7. We assume that 1 ≤ an ≤ 7 and we
prove the same inequalities for an+1 as follows:

an+1 =
√

8an − 7 ≤
√

8 · 7− 7 = 7, an+1 =
√

8an − 7 ≥
√

8 · 1− 7 = 1.
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The sequence is increasing if an+1 − an is non-negative. We observe that

an+1 − an =
a2n+1 − a2n
an+1 + an

=
8an − 7− a2n
an+1 + an

is positive for an between 1 and 7. Hence, the sequence is increasing.

We know that the limit exists by monotone convergence. Let L = lim
n→∞

an. Then by

taking the limit of both sides of the equation a2n+1 = 8an− 7 we get L2 = 8L− 7. Hence,
L ∈ {1, 7}. Since an is increasing and a1 = 4, we conclude that L = 7.

14. Find the limit for xn = sin(xn−1)
2 , x0 = 1. [Hint: use the fact | sin(x)| ≤ |x| for all x]

Solution:

Note |xn| = | sin(xn−1)
2 | ≤ |xn−1

2 |. Thus, by induction, we have that |xn| ≤ |x0|
2n = 1

2n for
all n. Since lim

n→∞
1
2n = 0, by the squeeze theorem, we conclude lim

n→0
xn = 0.

15. Let (an), (bn) be sequences. State if the following statements are true or false. If you think
that the statement is true, you should prove it, otherwise, provide a counterexample to the
statement.

(a) If (an) is monotone, then lim
n→∞

an exists or limn→∞ an = +∞ or limn→∞ an = −∞.

(b) If (an) and (bn) are monotone, then the sequence cn = an + bn is monotone.

(c) If lim
n→∞

|an+1 − an| = 0, then (an) is a bounded sequence.

(d) An unbounded sequence can have a convergent subsequence.

(e) If (an) has no convergent subsequence, then (an) is unbounded.

Solution:

(a) True. Indeed, if (an) is monotone and bounded, then it converges and hence lim
n→∞

an

exists. If it is monotone increasing and unbounded, then it approaches +∞ and so
lim
n→∞

an = +∞. If it is monotone decreasing and unbounded, then it approaches

−∞ and so lim
n→∞

an = −∞.

(b) False. For example, take an = 2n + (−1)n and bn = −2n. Then (an) is monotone
increasing because

an+1 − an = 2(n+ 1) + (−1)n+1 − 2n− (−1)n = 2 + 2(−1)n+1 ≥ 2− 2 = 0,

and (bn) is monotone decreasing. But cn = an + bn = (−1)n is not monotone.

(c) False. Take for example an =
√
n for all n ∈ N. Then

|an+1 − an| =
√
n+ 1−

√
n =

(√
n+ 1−

√
n
)(√

n+ 1 +
√
n
)

√
n+ 1 +

√
n

=
1√

n+ 1 +
√
n

converges to 0 but (an) is not bounded.
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(d) True. Take for example

an =

{
n2 if n is odd,

1 if n is even.

then (a2k) is a convergent subsequence, while an is divergent.

(e) True. This statement is the contrapositive of the Bolzano–Weierstrass theorem.

16. Compute the following limits:

(a) lim
n→∞

(
1 + 2

n

)n
(Hint: e = lim

n→∞

(
1 + 1

n

)n
= lim

n→∞
(n+1)n

nn , and e = lim
n→∞

(
1 + 1

n+1

)n+1

= lim
n→∞

(n+2)n+1

(n+1)n+1 )

(b) lim
n→∞

(
1− 1

n

)n
(Hint: e−1 =

(
lim

n→∞

(
1 + 1

n

)n)−1
= lim

n→∞

((
1 + 1

n

)−n)
= lim

n→∞
nn

(n+1)n )

(c) lim
n→∞

(
1− 1

n2

)n
(Hint:

(
1− 1

n2

)
=
(

12 −
(
1
n

)2)
)

Solution:

(a) Later in the course you will learn to do this with a change of variables; now you can
do as follows

lim
n→∞

(
1 +

2

n

)n

= lim
n→∞

(
n+ 2

n

)n

= lim
n→∞

(
n+ 2

n

)n(
n+ 2

n+ 2

)(
n+ 1

n+ 1

)n+1

= lim
n→∞

(
n+ 1

n

)n(
n+ 2

n+ 1

)n+1(
n+ 1

n+ 2

)
= lim

n→∞

(
1 +

1

n

)n(
1 +

1

n+ 1

)n+1(
n+ 1

n+ 2

)
= e2

(b)

lim
n→∞

(
1− 1

n

)n

= lim
n→∞

n− 1

n

1(
1 + 1

n−1

)n−1 =
1

e

(c)

lim
n→∞

(
1− 1

n2

)n

= lim
n→∞

(
1− 1

n

)n(
1 +

1

n

)n

= 1

17. Let an =
(
1 + 2

n

)n
. We are going to compute its limit using subsequences

(a) Compute lim
n→∞

a2n.

(b) Show that an ≤ an+1.

(c) Use subsequences, squeeze theorem and monotone convergence to show that the sequence
(an) is convergent and its limit.
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Solution:

(a) We have

lim
n→∞

a2n = lim
n→∞

((
1 +

1

n

)n)2

= e2.

(b) This is very similar to the proof that(
1 +

1

n

)n

<

(
1 +

1

n+ 1

)n+1

You can find it in any analysis book, and in the lecture notes (Example 4.51, Intro-
duction of e).

(c) We already know that the subsequence a2n converges to e2. Point (b) implies that
a2n < a2n+1 < a2n+2. We can now use the squeeze theorem and point (a) to show
that the sequence (a2n+1) converges to e2 as well. In particular

sup{a2n : n ∈ N} = sup{a2n+1 : n ∈ N} = e2

because both sequences (a2n) and (a2n+1) are monotone increasing and converge.
Then (an) is bounded above and

sup{an : n ∈ N} = max{sup{a2n : n ∈ N}, sup{a2n+1 : n ∈ N}} = e2.

Since the sequence (an) is monotone increasing and bounded above it converges by
monotone convergence and the limit, which is the supremum, is e2.
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