
Analysis I (English)
Roberto Svaldi and Stefano Filipazzi
Fall Semester 2021–2022

Analysis 1 - Exercise Set 4

Remember to check the correctness of your solutions whenever possible.

To solve the exercises you can use only the material you learned in the course.

1. (a) Prove that for all n ∈ N, (cos(x) + i sin(x))n = cos(nx) + i sin(nx).

(b) Find all the solutions to the equation xn = 1, for n ∈ N.

Solution:

(a) We use the exponential representation of complex numbers:

(cos(x) + i sin(x))n = (eix)n = einx = cos(nx) + i sin(nx).

(b) We know that raising a complex number to a power also raises its modulus to the
same power. So, to be a solution to xn = 1, we need |x| = 1. So, we have x = eiθ

for some angle θ. Then, by part (a), we get that cos(nθ) + sin(nθ) = 1. So, we have
nθ = 2kπ for some k ∈ Z. Thus, the solutions are θ = 0, 2π

n , 2
2π
n , . . . , (n− 1) 2π

n , and

the solutions for x are x = 1, x
2π
n , x2 2π

n , . . . , x(n−1) 2π
n .

2. Find all the solutions of the following equations in C.

(a) z2 + 6z + 12− 4i = 0

(b) (z3 − 1)2 = −1

Solution:

(a) First, we try completing the square (using the quadratic formula is analogous). So,
we have

z2 + 6z + 12− 4i = z2 + 6z + 9 + 3− 4i = (z + 3)2 + 3− 4i.

So, our equation becomes
(z + 3)2 = 4i− 3.

With some work involving trigonometry, one can show that 1 + 2i is a square root
of 4i − 3. Then, the other root is −1 − 2i. So, one solution will be z + 3 = 1 + 2i,
namely z = −2 + 2i, and the other will be z = −4− 2i. In this process, we relied on
the given fact that 1 + 2i is a square root of 4i− 3. This may require some lengthy
work. For this reason, sometimes it is best to consider an alternative approach,
which is discussed here below.

We consider the form z = a + ib with a, b ∈ R. Substituting this into the equation
we get,

(a+ ib)2 + 6(a+ ib) + 12− 4i = 0.



which is equivalent to the system of equations

a2 − b2 + 6a+ 12 = 0

2ab+ 6b− 4 = 0.

from the first equation we obtain

a = −3±
√
b2 − 3

and since a and b are real numbers then |b| ≥
√

3. We can write the second equation
as

a =
2

b
− 3

If we substitute this in the above expression we get that

b2 − 3 =
4

b2
=⇒ b4 − 3b2 − 4 = (b2 − 4)(b2 + 1) = 0

Then we have b = ±2 since b is real. So the two solutions to the equations are
z1 = −2 + 2i and z2 = −4− 2i.

Verification: substitute the solutions into the equation and compute.

(b) Use the change of variable z̃ = z3 − 1. Now the equation for z̃ takes the form

z̃2 = −1

so z̃ = ±i. So z3 = 1± i. We write

1 + i =
√

2ei
π
4

1− i =
√

2e−i
π
4

We use the polar representation of complex numbers and write z = reiθ with r > 0
and 0 ≤ θ < 2π. For z3 =

√
2eiπ/4 we have

z3 = (reiθ)3 = r3ei(3θ) =
√

2ei(2kπ+π/4), k = 0, 1, 2, . . .

which has the solutions r = 6
√

2 and θ = π
12 , θ = 3π

4 and θ = 17π
12 . Similarly for

z3 =
√

2e−iπ/4 we have

z3 = (reiθ)3 = r3ei(3θ) =
√

2ei(2kπ−π/4), k = 0, 1, 2, . . .

which has the solutions r = 6
√

2 and θ = 23π
12 , θ = 7π

12 and θ = 5π
4 . The final 6

solutions are
z1 =

6
√

2ei
π
12

z2 =
6
√

2ei
3π
4

z3 =
6
√

2ei
17π
12

z4 =
6
√

2ei
23π
12

z5 =
6
√

2ei
7π
12

z6 =
6
√

2ei
5π
4

Verification: substitute the solutions into the equation and compute.
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3. (a) Let {an} be a sequence and let {bn} be the sequence defined as bn := |an|. Prove that
{an} is bounded if and only if so is {bn}.

(b) Prove that if q < −1, then the sequence xn = aqn, a ∈ R, a 6= 0, is unbounded.

(c) Provide an example of a sequence {an} that is bounded above and such that {|an|} is
not bounded above.

Solution:

1. Let us prove that the boundedness of {an} implies the boundedness of {bn}. The
sequence {an} is bounded ⇐⇒by definition there exists real number C1, C2 ∈ R such
that

C1 ≤ an ≤ C2, ∀n ∈ N.

Let C := max{|C1|, |C2|}. Then,

−C ≤ C1 ≤ an ≤ C2 ≤ C, ∀n ∈ N, (1)

by the properties of the aboslute values of real numbers. We can rewrite (1) as

|an| ≤ C, ∀n ∈ N. (2)

As |an| ≥ 0, then 0 ≤ |an| ≤ C, for all n ∈ N and bn is bounded.
Let us prove that the boundedness of {bn} implies the boundedness of {an}. The
sequence {bn} is bounded⇐⇒by definition there exists a non-negative real number C ′

such that 0 ≤ bn ≤ C ′, ∀n ∈ N (since bn ≥ 0)⇐⇒bn=|an| there exists a non-negative
real number C ′ such that −C ′ ≤ an ≤ C ′ ∀n ∈ N ⇐⇒by definition (an) is bounded.

2. We consider the sequence |xn| = a|q|n, where now we know |q| > 1. Then, we saw
in class that this sequence is not bounded (using Bernoulli’s inequality). Then, by
part (a) we are done.

3. The sequence an = −n is a valid example.

4. Let {xn} be the recursive sequence defined as{
xn = xn−1 + (−1)nn2

x0 = 0.

Prove that for all m ∈ N {
x2m = (2m+ 1)m

x2m+1 = −(2m+ 1)(m+ 1).

[Hint: use induction on m].
Is {xn} bounded from above? Is it bounded from below?

Solution:

We will prove this by induction. One can easily verify the formula for m = 0: indeed,
0 = x0 = x2·0 = (2 · 0 + 1) · 0.

Now suppose the claim holds for some natural number m = k; that is, we have x2k =
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(2k + 1)k and x2k+1 = −(2k + 1)(k + 1). Then,

x2k+2 =x2k+1 + (−1)2k+2(2k + 2)2

=− (2k + 1)(k + 1) + (2k + 2)2

=(2k + 3)(k + 1)

and

x2k+3 =x2k+2 + (−1)2k+3(2k + 3)2

=(2k + 3)(k + 1)− (2k + 3)2

=− (2m+ 3)(m+ 2)

as required. From this we also see that the sequence is not bounded from below nor
from above, since x2m is monotonic increasing and unbounded and x2m+1 is monotonic
decreasing and unbounded.

5. Check if the sequence starting from n = 1 defined as an =
sin( 1

n )

n is monotone, and if it
converges or diverges.

Solution: Consider the unit circle. Since the sin function is defined as the y-coordinate
of a point on the unit circle, we have that, if 0 ≤ p ≤ q ≤ π

2 , we have 0 = sin(0) ≤
sin(p) ≤ sin(q) ≤ sin(π2 ) = 1. Since 0 ≤ 1

n ≤ 1 ≤ π
2 for every positive integer, we have

that 0 ≤ sin( 1
n ) ≤ sin(1) ≤ sin(π2 ) = 1 for every positive integer. So, the numerator is

bounded between 0 and 1. Then, as the denominator is always greater than or equal than
1, we get an ≤ sin( 1

n ). In particular, the sequence {an} is bounded by 0 and 1.

For every positive integer n, we have 0 ≤ 1
n+1 ≤

1
n ≤

π
2 . So, we have 0 ≤ sin( 1

n+1 ) ≤
sin( 1

n ) ≤ 1. In particular, sin( 1
n ) is decreasing. Dividing a positive decreasing sequence,

such as sin( 1
n ), by a positive increasing one, such as n, we obtain a decreasing sequence,

so an is monotone decreasing (notice that here we need the sequence to be positive, as
having negative signs may swap the order of inequalities). We conclude that an, being
monotone and bounded, converges. Another way to prove the convergence is to observe
that since 0 ≤ sin( 1

n ) ≤ 1 for all n ≥ 1, then 0 ≤ an ≤ 1
n . So an converges to 0 by the

Squeeze Theorem.

6. Check if the sequence

(a) an = n
4n−1

(b) an = (−1)n n
2+π
n starting from n = 1

is monotone, and if it converges or diverges.

Solution:

(a) Since an+1 − an = − 1
(4n−1)(4n+3) < 0, the sequence an is monotone decreasing. It

is bounded below by 0, hence it converges. Indeed, an = 1
4− 1

n

, so for all ε > 0 we

have 0 ≤ 1
4− 1

n

− 1
4 ≤ ε for all n ≥ nε =

[
1

16ε + 1
4

]
+ 1.
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(b) It is not monotone as can be seen by the fact that it oscillates between being positive
and negative. It also does not converge because the sequence is unbounded. This is

seen by |an| = n2+π
n = n+ π

n .

7. Find the limit of the following sequences, if they exist:

(a) an =
5n2 − 3n+ 2

3n2 + 7

(b) an = (−1)n
4
√
n

3
√
n

(c) an =
√
n−n+n2

2n2+n
3
2 +n

(d) an = sin( 1
n ) + n−2

n
√

2+77

Solution:

(a)

lim
n→∞

5n2 − 3n+ 2

3n2 + 7
= lim
n→∞

5− 3 1
n + 2

n2

3 + 7
n2

=
5− 3 lim

n→∞
1
n + 2 lim

n→∞
1
n2

3 + 7 · lim
n→∞

1
n2

=
5

3

(b) We have

lim
n→∞

∣∣∣∣(−1)n
4
√
n

3
√
n

∣∣∣∣ = lim
n→∞

n( 1
4−

1
3 ) = lim

n→∞

1

n
1
12

= 0.

Since −|an| ≤ an ≤ |an| for all n, by the Squeeze Theorem we have

lim
n→∞

(−1)n
4
√
n

3
√
n

= 0 .

(c) Dividing numerator and denominator by n2 we get

an =
n−

3
2 − n−1 + 1

2 + n−
1
2 + n−1

so, arguing as in part (a), the limit is 1
2 .

(d) As argued in problem 4, sin( 1
n ) converges to 0. Furthermore, arguing as in part (a),

n−2
n
√

2+77
converges to 1√

2
; both limits exist, so the sum converges to the sum of the

limits, which is 1√
2

8. Let (an) be a sequence. Specify if the following statements are true or false. If you think
that the statement is true, you should prove it, otherwise, provide a counterexample to the
statement.

(a) If {an} is bounded then {an} is convergent.

(b) If {an} is bounded and an ≥ 0, ∀n ∈ N, then {an} is convergent.

(c) If {an} is monotone and unbounded, then it is bounded from above.

(d) If {an} is monotone and unbounded, then it is bounded from below.
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(e) If {an} is bounded and monotone then {an} is convergent.

(f) If {an} is convergent, then there exists ε > 0 such that |an| ≤ ε for all n ∈ N.

(g) Let {an} be a sequence and let {bn} be the sequence defined as bn := |an|.
Then, limn→∞ an = 0 if and only if limn→∞ bn = 0.

Solution:

(a) False, take the sequence an = (−1)n.

(b) False, take the sequence an = (−1)n + 1.

(c) False, take the sequence an = n.

(d) False, take the sequence an = −n.

(e) True. Suppose that an is monotone increasing. We prove that lim
n→+∞

an = sup
n∈N

an :=

a.

Let ε > 0 be given. By the definition of supremum ∃N ∈ N s.t. |a−aN | = a−aN < ε.
Let n > N , by monotonicity we have |a − an| = a − an ≤ a − aN < ε. Thus,
∀ε > 0∃N ∈ N s.t. n > N ⇒ |a− an| < ε as required.

Now suppose that an is monotone decreasing. We prove that lim
n→+∞

an = inf
n∈N

an :=

a.

Let ε > 0 be given. By the definition of infimum ∃N ∈ N s.t. |aN −a| = aN −a < ε.
Let n > N , by monotonicity we have |an − a| = an − a ≤ aN − a < ε. Thus,
∀ε > 0∃N ∈ N s.t. n > N ⇒ |a− an| < ε as required.

(f) True. Convergent sequences are bounded. If an → a then ∃N ∈ N s.t. n > N ⇒
|an−a| < 1

17 ⇒ |an| = |an−a+a| ≤ |an−a|+ |a| < 1
17 + |a|. Thus, ∀n > N |an| <

1
17 + |a|. It therefore follows that |an| ≤ max{|a1|, · · · , |aN−1|, 1

17 + |a|} ∀n ∈ N.
Hence, we may choose ε = max{|a1|, · · · , |aN−1|, 1

17 + |a|}.

(g) True. 0 is the limit of (an) ⇐⇒by definition ∀ε > 0, ∃nε ∈ N such that for n ≥ nε,
|an − 0| = | 1n | < ε ⇐⇒ since | 1n |=bn

∀ε > 0, ∃nε ∈ N such that for n ≥ nε, |bn − 0| =
| 1n | < ε ⇐⇒by definition limn→∞ bn = 0.

9. Let p > q be natural numbers. Show that if P (x) =
∑p
i=0 cix

i is a polynomial with real
coefficients of degree p (that is, cp 6= 0), and Q(x) =

∑q
j=0 bjx

j is a polynomial with real
coefficients of degree q (that is, bq 6= 0), then the sequence (an) defined as

an :=
P (n)

Q(n)
is unbounded.

Solution:

By the contrapositive of exercise 7(c) above, it suffices to show that for any positive real
number C, there exists a natural number nC ∈ N such that |anC | ≥ C. Let us assume by
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contradiction that {an} is bounded. Then, there exists positive real number Csuch that
for all n ∈ N then |anC | < C. Then,

0 ≤
(

1

n

)p−q
|an| ≤

(
1

n

)p−q
C.

As p > q, then limn→∞
(

1
n

)p−q
= 0. Hence, by the Squeeze Theorem, the above 2

equations imply that limn→∞
(

1
n

)p−q |an| = 0. On the other hand,(
1

n

)p−q
|an| = |

P (n)

np−qQ(n)
| = | P (n)

Q1(n)
|,

where the polynomial Q1(x) is defined as Q1(x) = xp−qQ(x). Then the degree of Q1(x) is
exactly p and the coefficient of leading term of Q1 (that is the coefficient of the monomial
of degree p in Q1) is bq 6= 0. Hence, the result that we discussed in class, tell us that since
P,Q1 have the same degree then

lim
n→∞

| P (n)

Q1(n)
| = |ap

bq
| 6= 0,

since ap 6= 0. But this is contradiction with what we proved before.

10. Find the limit of the following sequences, if they exist:

(a) an =
√

2n2 + 3−
√

(2n+ 1)(n+ 4)

(b) an =
√
n(
√
n3 + 2n−

√
n3 + 4)

Solution:

(a)

lim
n→∞

√
2n2 + 3−

√
(2n+ 1)(n+ 4) = lim

n→∞

2n2 + 3− (2n+ 1)(n+ 4)√
2n2 + 3 +

√
(2n+ 1)(n+ 4)

= lim
n→∞

−9n− 1
√

2n
(√

1 + 3
2n2 +

√
1 + 9

2n + 2
n2

) =
−9

2
√

2
.

(b)

lim
n→∞

√
n(
√
n3 + 2n−

√
n3 + 4) = lim

n→∞

√
n(n3 + 2n− n3 − 4)√
n3 + 2n+

√
n3 + 4

= lim
n→∞

√
n(2n− 4)

n
√
n
(√

1 + 2
n2 +

√
1 + 4

n3

) = 1

11. Find the limit of the following sequences:

(a) an = sin

(
1

n

)
(b) an =

sin
(

1
n

)
1
n
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(c) an = n · sin
(

2n+ 3

n3

)
Hint: remember that for 0 < x < π/2 we have the inequalities:

0 ≤ sin(x) ≤ x ≤ tan(x) ⇒ 1 ≤ x

sin(x)
≤ 1

cos(x)
⇒ cos(x) ≤ sin(x)

x
≤ 1

⇒ cos(x)2 ≤
(

sin(x)

x

)2

≤ 1 ⇒ 1− sin(x)2 ≤
(

sin(x)

x

)2

≤ 1

⇒ 1− x2 ≤
(

sin(x)

x

)2

≤ 1 ⇒
√

1− x2 ≤ sin(x)

x
≤ 1 .

Solution:

(a) We have

0 ≤ sin

(
1

n

)
≤ 1

n

Squeeze Theorem
=⇒ lim

n→∞
sin

(
1

n

)
= 0 .

(b) We have √
1− 1

n2
≤

sin( 1
n )

1
n

≤ 1
Squeeze Theorem

=⇒ lim
n→∞

sin( 1
n )

1
n

= 1

(c) We have √
1−

(
2n+ 3

n3

)2

≤
sin
(

2n+3
n3

)
2n+3
n3

≤ 1 .

Similarly to part (b), we first argue that

lim
n→∞

√
1−

(
2n+ 3

n3

)2

= 1 .

According to the Squeeze Theorem

lim
n→∞

sin
(

2n+3
n3

)
2n+3
n3

= 1 .

So

lim
n→∞

(
n sin

(
2n+ 3

n3

))
= lim
n→∞

(
2n+ 3

n2
·

sin
(

2n+3
n3

)
2n+3
n3

)

=

(
lim
n→∞

2n+ 3

n2

)
·

(
lim
n→∞

sin
(

2n+3
n3

)
2n+3
n3

)
= 0 · 1 = 0 .

Note that we can split the limits because both sequences
(

2n+3
n2

)
and

(
sin( 2n+3

n3 )
2n+3

n3

)
converge.
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12. Show that the sequence given by
a1 = 2

an =
1

2
(an−1 + 6)

is increasing and bounded above by 6. (Hint: Use induction for both)

Solution:

It is slightly easier to show first that the sequence is bounded and then that it is monotone,
and we will indeed apply this strategy in the next exercises. Here, let’s show first that it
is monotone.

To show that the sequence is increasing we define the difference sequence as dn = an+1 −
an = 3− an/2. Showing dn ≥ 0 is equivalent to showing (an) is increasing. We show by
induction: for n = 1, d1 = 2 > 0. Now suppose that dn ≥ 0 meaning an ≤ 6. For n + 1
we have:

dn+1 = 3− an+1

2
= 3− 3 + an/2

2
=

3

2
− an

4
≥ 3

2
− 6

4
= 0

So (an) is increasing. To show that it is bounded above by 6 we use induction again. For
n = 1 we have that a1 = 2 < 6. Suppose that an < 6, for n+ 1 we have:

an+1 =
1

2
(an + 6) ≤ 1

2
(6 + 6) = 6.

13. Let {an} be a sequence. Specify if the following statements are true or false. If you believe
that the statement is true, you should give a proof, otherwise, provide a counterexample to
the statement.

(a) If

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1,

then {an} converges.

(b) If

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1,

then {an} diverges.

Solution:

(a) False, take an = n.

(b) False, take for example an = 1/n. We have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ n

n+ 1

∣∣∣∣ = 1

but limn→∞
1
n = 0.

14. Consider two sequences of real numbers an and bn. Assume that 0 < an < 3 and −4 < bn < 0
for every n. Which of the following claims is true? (Only one choice is correct)
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(a) The sequence 1
an

is bounded.

(b) The sequence anbn is bounded below by -4.

(c) The sequence an + bn has to be negative.

(d) The sequence anbn is bounded below by -12.

(e) The sequence an
bn

is bounded.

Solution: The right answer is (d). Indeed, for every n, we have

−12 = −4 · 3 < −4 · an < bn · an,

where the first inequality comes from multiplying an < 3 both sides by -4, and the second
inequality comes from multiplying −4 < bn both sides by the positive number an.

A counterexample to (a) is given by an = 1
n .

A counterexample to (b) is given by the constant sequences an = 2 and bn = −3.

A counterexample to (c) is given by the constant sequences an = 2 and bn = −1.

A counterexample to (e) is given by an = 1 (constant) and bn = − 1
n .

15. Let z and w be two complex numbers. Which of the following statements is true? (Only one
choice is correct)

(a)
(
z
w

)
= z

w

(b) |z| = z · z
(c) Im(z + w) = Re(i(z + w))

(d) Re(z + w) = Im(i(z + w))

(e) iRe(z + w) = Im(z + w)

Solution: Let z = a+ ib and w = c+ id, where a, b, c, d ∈ R.

The right answer is (d). Indeed, z+w = (a+c)+ i(b+d), so Re(z+w) = a+c. Similarly,
we have i(z + w) = −(b+ d) + i(a+ c), and Im(i(z + w)) = a+ c.

Answer (a) is incorrect, since we need to conjugate the denominator as well to obtain a
right formula. A counterexample to the formula given in (a) is given by z = i and w = i.

Answer (b) is incorrect, since we need to take the square root of z · z to get the absolute
value of z.

The above computation for (d) shows that (c) is wrong, as the formula also needs a
negative sign to hold true.

Finally, answer (e) is incorrect, since real and imaginary parts are real numbers.

16. Prove the following properties of the binomial coefficients:

(a) Symmetry:
(
n
k

)
=
(
n

n−k
)
;

(b) Binomial formula: Assuming the recurrence formula that you find in (c) below, prove

that (x+ y)n =
n∑
k=0

(
n
k

)
xkyn−k. [Hint: use induction on n. You may use the result from

(c).]
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(c)* Recurrence:
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
. Deduce from this that

(
n
k

)
∈ N; [Hint: use induction

on n.]

Solution:

(a)
(
n
k

)
= n!

k!(n−k!) = n!
(n−k)!k! =

(
n

n−k
)

(b) Prove by induction. The formula for n = 0 can be easily verified (remember 0! = 1
and

(
0
0

)
= 1). Now suppose it holds for some natural number m. Hence,

(x+ y)m =

m∑
k=0

(
m

k

)
xkym−k

Now show that this implies that the formula holds for m+ 1.

(x+ y)m+1

=(x+ y)m(x+ y)

=

m∑
k=0

(
m

k

)
xkym−k(x+ y)

=

m∑
k=0

(
m

k

)
xk+1ym−k +

m∑
k=0

(
m

k

)
xkym−k+1

=xm+1 +

m−1∑
k=0

(
m

k

)
xk+1ym−k + ym+1 +

m∑
k=1

(
m

k

)
xkym+1−k

=xm+1 +

m∑
k=1

(
m

k − 1

)
xkym−k+1 +

m∑
k=1

(
m

k

)
xkym+1−k + ym+1

=xm+1 +

m∑
k=1

((
m

k

)
+

(
m

k − 1

))
xkym+1−k + ym+1

=xm+1 +

m∑
k=1

(
m+ 1

k

)
xkym+1−k + ym+1

=

m+1∑
k=0

(
m+ 1

k

)
xkym+1−k

as required.
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(c) Follows from direct computation:(
n− 1

k − 1

)
+

(
n− 1

k

)
=

(n− 1)!

(k − 1)!(n− k)!
+

(n− 1)!

k!(n− k − 1)!

=
(n− 1)!k!(n− k − 1)! + (n− 1)!(k − 1)!(n− k)!

k!(n− k)!(k − 1)!(n− k − 1)!

=
1

k!(n− k)!

(n− 1)!k!(n− k − 1)! + (n− 1)!(k − 1)!(n− k)!

(k − 1)!(n− k − 1)!

=
1

k!(n− k)!

(n− 1)!k + (n− 1)!(n− k)

1

=
n(n− 1)!

k!(n− k)!

=

(
n

k

)
as required. Now we can show that they are all contained in N by induction on n.
One can verify that it holds for n = 0. Now suppose it holds for some m− 1. Then(
m
k

)
=
(
m−1
k

)
+
(
m−1
k−1

)
must also be a natural number since it is a sum of two natural

numbers.
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