Analysis T (English) |
Roberto Svaldi and Stefano Filipazzi l

Fall Semester 2021-2022

Analysis 1 - Exercise Set 4

Remember to check the correctness of your solutions whenever possible.
To solve the exercises you can use only the material you learned in the course.

1. (a) Prove that for all n € N, (cos(x) + isin(x))™ = cos(nz) + isin(nz).
(b) Find all the solutions to the equation 2™ = 1, for n € N.

Solution:

(a) We use the exponential representation of complex numbers:

(cos(z) + isin(z))™ = (&)™ = e = cos(nx) + isin(n).

(b) We know that raising a complex number to a power also raises its modulus to the
same power. So, to be a solution to ™ = 1, we need |z| = 1. So, we have z = et?
for some angle . Then, by part (a), we get that cos(nf) + sin(nf) = 1. So, we have
nf = 2k for some k € Z. Thus, the solutions are 6 = 0, 27", 227“, ey (n— 1)27777 and
the solutions for x are x = 1, 2%, a2, ...,z DT,

2. Find all the solutions of the following equations in C.

(a) 22 +62+12—4i=0
(b) (=~ 17 = -1

Solution:

(a) First, we try completing the square (using the quadratic formula is analogous). So,
we have

22462412 —4i=224+62+9+3—4i=(2+3)2+3—4i.

So, our equation becomes
(z+3)%=4i—3.

With some work involving trigonometry, one can show that 1 + 2¢ is a square root
of 4i — 3. Then, the other root is —1 — 2i. So, one solution will be z + 3 = 1 + 21,
namely z = —2+ 2¢, and the other will be z = —4 — 2. In this process, we relied on
the given fact that 1+ 2i is a square root of 4¢ — 3. This may require some lengthy
work. For this reason, sometimes it is best to consider an alternative approach,
which is discussed here below.

We consider the form z = a + ib with a,b € R. Substituting this into the equation
we get,
(a+1ib)® +6(a +1ib) + 12 — 4i = 0.




which is equivalent to the system of equations

a? = b +6a+12=0
2ab + 6b — 4 = 0.

from the first equation we obtain
a=-3++b%2-3

and since a and b are real numbers then |b| > /3. We can write the second equation
as

_2
““b
If we substitute this in the above expression we get that
4
b2—3:b—2 — -3 4= —4HD*+1)=0

Then we have b = £2 since b is real. So the two solutions to the equations are
z1 = —2+2i and z9 = —4 — 21.

Verification: substitute the solutions into the equation and compute.
Use the change of variable Z = 23 — 1. Now the equation for Z takes the form
2 =-1
so Z = +i. So 23 =1 +14. We write
1+i=1+2e"%
1—i=+2e"%

We use the polar representation of complex numbers and write z = re*® with r > 0
and 0 < 6 < 27. For 23 = v/2¢i™/4 we have

23 = (rew)?’ = p3eiB0) = /9! Ckmtn/4) = ,1,2,. ..
which has the solutions r = /2 and 6 = 1“—2, 0 = ‘%’T and 0 = 117—2” Similarly for
23 = /2 /4 we have

2B = (reif)3 = 13¢i(30) = \/2eihm—n/4) | _ 0 1)9 ..

which has the solutions » = /2 and 0 = 213—2“, 0 = % and 6 = %’r. The final 6
solutions are
21 = V/2e'12

6 3m
20 = V2" 4

6 ;17
z3 = V2e'12

6 5w
26 = V2e'1

Verification: substitute the solutions into the equation and compute.
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(a) Let {a,} be a sequence and let {b,} be the sequence defined as b, := |a,|. Prove that
{a,} is bounded if and only if so is {b,}.

(b) Prove that if ¢ < —1, then the sequence z,, = aq™, a € R, a # 0, is unbounded.

(¢) Provide an example of a sequence {a,} that is bounded above and such that {|a,|} is
not bounded above.

Solution:

1. Let us prove that the boundedness of {a,} implies the boundedness of {b,,}. The
sequence {a,} is bounded < by definition there exists real number C,C> € R such
that

C’lgan§02, Vn € N.

Let C := max{|C1],|C2|}. Then,
—-C<Ci1<a,<Cy<C, VneN, (1)
by the properties of the aboslute values of real numbers. We can rewrite (1) as
lan| < C, VneN. (2)

As |an| >0, then 0 < |a,| < C, for all n € N and b,, is bounded.

Let us prove that the boundedness of {b,} implies the boundedness of {a,}. The
sequence {b, } is bounded <=1y definition there exists a non-negative real number o4
such that 0 < b, < C’, Vn € N (since b, > 0) <=, —|a,| there exists a non-negative
real number C’ such that —C" < a,, < C" Vn € N <=1y definition (@n) is bounded.

2. We consider the sequence |z,| = a|q|™, where now we know |g| > 1. Then, we saw
in class that this sequence is not bounded (using Bernoulli’s inequality). Then, by
part (a) we are done.

3. The sequence a,, = —n is a valid example.

. Let {z,} be the recursive sequence defined as

Ty = Tp_1 + (—1)"n?
o = 0.

Prove that for all m € N
Tom = (2m+ 1)m
Tom+1 = —(2m + 1)(m + 1).

[Hint: use induction on m).
Is {z,} bounded from above? Is it bounded from below?

Solution:

We will prove this by induction. One can easily verify the formula for m = 0: indeed,
O:$0:I20:(20+1)0

Now suppose the claim holds for some natural number m = k; that is, we have xo, =
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(2k + 1)k and xop41 = —(2k 4+ 1)(k + 1). Then,

Tok+2 =T2k41 + (—1)2k+2(2k + 2)2
=—(2k+1)(k+1)+ (2k +2)?
=2k +3)(k+1)

and
=Zopio + (71)2k+3(2k+3)2

=2k +3)(k + 1) — (2k + 3)*
=—2m+3)(m+2)

T2k+3

as required. From this we also see that the sequence is not bounded from below nor
from above, since xs,, is monotonic increasing and unbounded and x3,,+1 is monotonic
decreasing and unbounded.

sin(%)

5. Check if the sequence starting from n = 1 defined as a, =
converges or diverges.

is monotone, and if i

Solution: Consider the unit circle. Since the sin function is defined as the y-coordinate
of a point on the unit circle, we have that, if 0 < p < ¢ < 5, we have 0 = sin(0) <
sin(p) < sin(q) < sin(§) = 1. Since 0 < % <1 < 7 for every positive integer, we have
that 0 < sin(+) < sin(1) < sin(%) = 1 for every positive integer. So, the numerator is
bounded between 0 and 1. Then, as the denominator is always greater than or equal than
1, we get a, < sin(%). In particular, the sequence {a,} is bounded by 0 and 1.

w1 < n <5 1) <
sin(%) < 1. In particular, sin(%) is decreasing. Dividing a positive decreasing sequence,
such as sin(%)7 by a positive increasing one, such as n, we obtain a decreasing sequence,
SO a, is monotone decreasing (notice that here we need the sequence to be positive, as
having negative signs may swap the order of inequalities). We conclude that a,,, being
monotone and bounded, converges. Another way to prove the convergence is to observe
that since 0 < sin(l) <1lforallm>1, then 0 <a, < % So a,, converges to 0 by the

n
Squeeze Theorem.

s

For every positive integer n, we have 0 < So, we have 0 < sin(

6. Check if the sequence

4dn—1

(—1)"# starting from n =1

(b)

is monotone, and if it converges or diverges.

an

Solution:

1

(a) Since ani1 — an =

T (dn—1)(4n+3)

< 0, the sequence a,, is monotone decreasing. It

is bounded below by 0, hence it converges. Indeed, a, =

have 0 < 1 (L4141

—igsforalannE

4—1>
n

so for all € > 0 we
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(b) It is not monotone as can be seen by the fact that it oscillates between being positive
and negative. It also does not converge because the sequence is unbounded. This is
2
seen by |a,| = 21T =n+ I

7. Find the limit of the following sequences, if they exist:

_ 5n? —3n+2
 3n2 47
4
(b) an = (—1)" L2
In
_ vn—n4n?
(C) n 2n24n5 +n

(d) an, =sin(2)+ n\”@_fw

Solution:

(a)

: 1 . 1
_om?—3n+2 . 5-3l4 2 S-3lmg+2lim o s
hm —_— = hm n = n- — - 1 = —
n—oo  3nZ+7 n—oo 3+ 347 lim — 3
n— o0
(b) We have
R 11 1
i |(—1)" Y2 = lim 0G4 = 1m0,
n—oo % n— 00 n—00 niz

Since —|a,| < a, < |a,| for all n, by the Squeeze Theorem we have

4
lim (—1)" vn =

(c) Dividing numerator and denominator by n? we get

3 —nlyd

n
Un = —"—"1 7
24 n7 2 +n"!

so, arguing as in part (a), the limit is %

(d) As argued in problem 4, sin() converges to 0. Furthermore, arguing as in part (a),
n;if?? converges to %; both limits exist, so the sum converges to the sum of the
limits, which is -

V2

8. Let (a,) be a sequence. Specify if the following statements are true or false. If you think
that the statement is true, you should prove it, otherwise, provide a counterexample to the
statement.

(a) If {a,} is bounded then {a,} is convergent.

(b) If {a,} is bounded and a,, > 0, ¥n € N, then {a,} is convergent.

(¢) If {a,} is monotone and unbounded, then it is bounded from above.
)

(d) If {a,} is monotone and unbounded, then it is bounded from below.
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(e) If {ay,} is bounded and monotone then {a,} is convergent.
(f) If {an} is convergent, then there exists € > 0 such that |a,| < € for all n € N.

(g) Let {ay} be a sequence and let {b,} be the sequence defined as b,, := |ay,]|.
Then, lim,, .+ a, = 0 if and only if lim, .~ b, = 0.

Solution:

(a) False, take the sequence a, = (—1)™.
(b) False, take the sequence a,, = (—=1)" + 1.
(c) False, take the sequence a,, = n.
(d) False, take the sequence a,, = —n.
)

(e) True. Suppose that a,, is monotone increasing. We prove that lim a, = supa, :=
n—+oo neN
a.

Let € > 0 be given. By the definition of supremum 3N € Ns.t. |[a—an| = a—an < €.
Let n > N, by monotonicity we have |a — a,| = a —a, < a —ay < e. Thus,
Ve > 03dN € Ns.t. n> N = |a — a,| < € as required.

Now suppose that a,, is monotone decreasing. We prove that lim a, = inlf\I ap 1=
ne

li
n—-+oo
a.

Let € > 0 be given. By the definition of infimum 3N € Ns.t. |ay —a] =ay—a <e.
Let n > N, by monotonicity we have |a, — a| = a,, —a < ay —a < e. Thus,
Ve > 03N € Ns.t. n > N = |a — a,| < € as required.

(f) True. Convergent sequences are bounded. If a,, — a then 3N € Nsit. n > N =
lan —a| < #= = |an| = |an —a+al| < |a, —a|+]a] < 75 +]a|. Thus,Vn > N |a,| <
7= + |a|. It therefore follows that |a,| < max{|ai|,---,|an—1|, 75 + |a]} Vn € N.
Hence, we may choose € = max{|a1,--- ,|lan—1], 1+ + |a|}.

(g) True. 0 is the limit of (an) <= by definition V€ > 0, In. € N such that for n > n,,
lan, — 0] = |%| < € <= gince |L|=b, V€ >0, Ine € N such that for n > n,, |b, — 0] =
|%| <e€ <:>by definition hmn—>oo bn =0.

9. Let p > ¢ be natural numbers. Show that if P(z) = > 7 ¢;a’ is a polynomial with real
coefficients of degree p (that is, ¢, # 0), and Q(z) = >7_,b;27 is a polynomial with real
coefficients of degree ¢ (that is, by # 0), then the sequence (a,) defined as

P
Ay = (n) is unbounded.

Q(n)

Solution:

By the contrapositive of exercise 7(c) above, it suffices to show that for any positive real
number C, there exists a natural number nc € N such that |a,.| > C. Let us assume by
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contradiction that {a,} is bounded. Then, there exists positive real number C'such that
for all n € N then |a,.| < C. Then,

1 pP—q 1 pP—q
0 S <) ‘an| S () C.
n n

W)

As p > q, then limn_mc( = 0. Hence, by the Squeeze Theorem, the above 2

equations imply that lim,, (%)piq |an| = 0. On the other hand,

(2)" ol = 1Ry - 20,

where the polynomial Q4 (z) is defined as Q1(x) = 2P~ 9Q(x). Then the degree of Q1 (x) is
exactly p and the coeflicient of leading term of )1 (that is the coefficient of the monomial
of degree p in (1) is b, # 0. Hence, the result that we discussed in class, tell us that since
P, Q1 have the same degree then

lim | P(n)

n—oo ' Q1 (n)

ap
=120
=152 20,

since ap, # 0. But this is contradiction with what we proved before.

10. Find the limit of the following sequences, if they exist:
(a) an=v2n2+3—/(2n+1)(n+4)
(b) a, = v/n(vVn3 +2n —/n3 +4)

Solution:

(a)

' 2n2+3—(2n+ )(n+4)
lim v2n2+3—+/(2n+1)(n+4 _1

—-9In -1 —9
= lim =

N (Vi+d+ 1eg+2) 22

) Vn(nd +2n —n? — 4)
lim n3+2n —y/n+4) = lim
n—00 vty v n—00 /n3 4 2n 4+ /n3 + 4

_ lim Vn(2n —4)

e E)

11. Find the limit of the following sequences:
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(c) ap = n-sin(2“+3)

n3

Hint: remember that for 0 < x < 7/2 we have the inequalities:

0 <sin(z) < z < tan(z) = 1< < L = cos(x) < sin() <1
sin(z) ~ cos(z) x
sin(z) 2 sin(z) 2
= cos(z)? < ( ) <1 = 1 —sin(z)? < ( > <1
x x
2 sin(z) ’ sin(x)
= 1-2c 1o iee®

Solution:

(a) We have

1 1 ueeze eorem 1

0 <sin () < - Saueeze L lim sin () =0.

n n n—00 n

(b) We have
. l . l
1_ % < Slnfn) < 1 Squeeze:T>heorem lim Slnfn> -1
n = n—o00 =

(¢) We have

on+3\° _ sin (2252)
1-—- ( > < 27,,.1?3 <1.

n3

According to the Squeeze Theorem

i (2253)
T 2n+3
n3

lim
n—o0

So

: . (2n+3 , 2n 43 sin (2242)
nlgrc}o nsm n3 - nlgrc}o n2 ' 727743’3

n

. 2n+3 . sin (243)
(i )(Ln@:o =0-1=0.

n3

. . 2n+3
Note that we can split the limits because both sequences (2’;{‘3) and (Sm(":‘)>
converge.
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12. Show that the sequence given by
a1 = 2

1
an = §(an,1 +6)

is increasing and bounded above by 6. (Hint: Use induction for both)

Solution:

It is slightly easier to show first that the sequence is bounded and then that it is monotone,
and we will indeed apply this strategy in the next exercises. Here, let’s show first that it
is monotone.

To show that the sequence is increasing we define the difference sequence as d,, = a,41 —
an = 3 — ap/2. Showing d,, > 0 is equivalent to showing (a,) is increasing. We show by
induction: for n =1, d; = 2 > 0. Now suppose that d,, > 0 meaning a,, < 6. For n + 1
we have:

ng1 _5_3+an/2 3 _an 3 _6_,

2 2 2 4 2 4

So (ay,) is increasing. To show that it is bounded above by 6 we use induction again. For
n =1 we have that a; = 2 < 6. Suppose that a,, < 6, for n + 1 we have:

dn+1 =3-

1
An41 = 7(an +6) <

5 (6 +6) = 6.

N =

13. Let {a,} be a sequence. Specify if the following statements are true or false. If you believe
that the statement is true, you should give a proof, otherwise, provide a counterexample to
the statement.

(a) If
lim |24 —
n—oo | ay,
then {a,} converges.
(b) If
lim |2 — g,
n—oco |
then {a,} diverges.
Solution:
(a) False, take a,, = n.
(b) False, take for example a, = 1/n. We have
lim Gnt1) _ lim ' =
n—o0 QA n—oo |n + 1
but lim,, o % =0.

14. Consider two sequences of real numbers a,, and b,,. Assume that 0 < a,, < 3 and —4 < b, <0
for every n. Which of the following claims is true? (Only one choice is correct)
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(a) The sequence i is bounded.
(b

)

) The sequence a,b,, is bounded below by -4.
(¢) The sequence a,, + b,, has to be negative.
)

)

(d) The sequence a,b,, is bounded below by -12.

(e) The sequence = is bounded.

Solution: The right answer is (d). Indeed, for every n, we have
—12=—-4-3< -4 -a, <by,-ay,

where the first inequality comes from multiplying a,, < 3 both sides by -4, and the second
inequality comes from multiplying —4 < b,, both sides by the positive number a,,.

A counterexample to (a) is given by a, = +.

A counterexample to (b) is given by the constant sequences a,, = 2 and b, = —3.
A counterexample to (c) is given by the constant sequences a,, = 2 and b,, = —1.
A counterexample to (e) is given by a,, =1 (constant) and b, = —+.

15. Let z and w be two complex numbers. Which of the following statements is true? (Only one
choice is correct)

@) (5) =13

(b) |s| =22

(¢) Im(z + w) = Re(i(z + w))

(d) Re(z+w) =Im(i(z + w))
)

(e) iRe(z + w) = Im(z + w)

Solution: Let z = a + ¢b and w = ¢ + id, where a,b,c,d € R.

The right answer is (d). Indeed, z4+w = (a+c¢) +i(b+d), so Re(z+w) = a+c. Similarly,
we have i(z + w) = —(b+d) + i(a + ¢), and Im(i(z + w)) = a+c.

Answer (a) is incorrect, since we need to conjugate the denominator as well to obtain a
right formula. A counterexample to the formula given in (a) is given by z =i and w = i.

Answer (b) is incorrect, since we need to take the square root of z - Z to get the absolute
value of z.

The above computation for (d) shows that (c) is wrong, as the formula also needs a
negative sign to hold true.

Finally, answer (e) is incorrect, since real and imaginary parts are real numbers.

16. Prove the following properties of the binomial coefficients:
(a) Symmetry: (3) = (,",);
(b) Binomial formula: Assuming the recurrence formula that you find in (c) below, prove

n
that (z +y)" = 3 (})a*y"~*. [Hint: use induction on n. You may use the result from

(0)] )
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(c)* Recurrence: (}) = (") + (~1). Deduce from this that (}) € N; [Hint: use induction
on n.|

Solution:

(a) (3) = k!(r:Lik!) = (nj;c!)!k! = (")

(b) Prove by induction. The formula for n = 0 can be easily verified (remember 0! = 1
and (g) = 1). Now suppose it holds for some natural number m. Hence,

e =3 ()t

k=0

Now show that this implies that the formula holds for m + 1.

(z +y)" "
=(z+y)"(z+y)
Ui m
:Z<k>m’“ym M+ y)
k=0
— (m k+1 m—k k, m—k+1
=3 ()3 (7)o
k=0
m—1
_$m+1+ ( >k+1mk m+1_|_ ( )km+1k
2\ >

:wm+1+z km1> k, m— k+1+Z( ) k m+1 k+ym+1

m m k. m+1—k m-+1
(k)+<k_1>>” Y

" /m+1 _
xm+1+z< )zkym+1 k+ym+1

as required.
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(c) Follows from direct computation:

n—1 n—1
Ga)+ ()
~ (n—1)! (n—1)!
S (k=D!(n—k)  Kl(n—k-1)
(=D —k—-1)!+(n—-1)(k—1)(n— k)
El(n — k)l(k — )!(n—k —1)!
1 (mn—D%n—-k—-1'+ (n—-DIk—-1)(n—Ek)!

El(n — k)! (k—1)!(n—k—1)!
B 1 (n =1+ (n—1)I(n—k)
Ckl(n—k)! 1
_n(n—1)

CEl(n—k)!

_(n

\k
as required. Now we can show that they are all contained in N by induction on n.
One can verify that it holds for n = 0. Now suppose it holds for some m — 1. Then

(7,?) = (mk_l) + (f:ll) must also be a natural number since it is a sum of two natural
numbers.
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