
Analysis I (English)
T Mountford Fall Semester 2022–2023

Analysis 1 - Exercise Set 3

Remember to check the correctness of your solutions whenever possible.

To solve the exercises you can use only the material you learned in the course.

1. Let [x] denote the integral part of a number x ∈ R.
Prove that, for every x ∈ R, [x] = −[−x].

Solution:

Recall the definition of integral part:

[x] =

{
bxc if x ≥ 0

dxe if x ≤ 0.

The question is symmetric between x and −x so we can take x ≥ 0 and since x = 0
is immediate as [0] = 0 we can suppose that x > 0. In this case x = [x] + a, where
0 ≤ a < 1.Again we can suppose that a > 0 since if a = 0, then x = bxc = dxe = [x] and
similarly −x = b−xc = d−xe = [−x].

So −x = −[x]− a for 0 < a < 1. But in this case [−x] = −[x] which we wanted to prove.

2. Let a, b ∈ R. Prove that ||a| − |b|| ≤ |a− b| and ||a| − |b|| ≤ |a+ b|

Solution: First, by the triangle inequality, we have

|a| = |a− b+ b| ≤ |a− b|+ |b|. (1)

Similarly, we have
|b| = |b− a+ a| ≤ |a− b|+ |a|, (2)

where we also used |a− b| = |b− a|. Rearranging (1), we get

|a| − |b| ≤ |a− b|, (3)

while rearranging (2), we get
|b| − |a| ≤ |a− b|. (4)

By definition of absolute value, one among ||a| − |b|| = |a| − |b| and ||a| − |b|| = |b| − |a|
holds true. Thus, by (3) and (4), we get ||a| − |b|| ≤ |a− b|.
For the second part, we use the fact that | − b| = |b| and we apply the first part to the
real numbers a and −b. Indeed, we get

||a| − |b|| = ||a| − | − b|| ≤ |a− (−b)| = |a+ b|.

3. Compute supS and inf S where S ⊆ R is defined as



(a) S :=
∞⋃
n=1

[−1 + 1
n , 1−

1
n ]. Does S admit maximum and/or minimum?

(b) S :=
∞⋂
n=1

(−1− 1
n , 1 + 1

n ). Does S admit maximum and/or minimum?

Solution:

(a) Note S = (−1, 1). Thus, inf S = −1 and supS = 1. They are not maxima or
minima.

(b) Note S = [−1, 1]. Thus, inf S = −1 and supS = 1. They are maxima or minima.

4. Compute minS where S ⊆ N is defined as

(a) S := {n ∈ N :
√
n > 17}

(b) S := {n ∈ N :
n∑
i=1

i ≥ 17}

(c) S := {n ∈ N :
n∑
i=1

2−i > 1.7}

Solution:

(a) n ∈ S ⇔ n > 172. Thus, the minimum of S is 172 + 1.

(b) Note
n∑
i=1

i = n(n+1)
2 . First find x ∈ R+ s.t. x(x+1)

2 = 17 which gives x = −1+
√
137

2

from the quadratic formula. Now note 112 < 137 < 122 hence x ∈ [−1+11
2 , −1+12

2 ] =
[5, 5.5]. Thus, the minimum of S is dxe = 6.

(c) Note
n∑
i=1

2−i = 1
2

1−( 1
2 )
n

1− 1
2

= 1− ( 1
2 )n < 1.7. Thus, the set is empty and the minimum

is not defined.

.

5. Compute maxS where S ⊆ Z is defined as

(a) S = {n ∈ Z | n 6= 0 and n+ 20
n < 9}

(b) S = {n ∈ Z | (
√

3)n ≤ 1017}.
(c) S = {n ∈ Z | αn ≤ C} where α > 1 and C > 1 are constants. [You must discuss how

maxS varies, when α and C vary.]

Solution:

(a) If n > 0, n+ 20
n < 9⇔ 0 > n2 − 9n+ 20 = (n− 4)(n− 5) from which we see that if

we are restricted to natural numbers this can never be satisfied, as the solution of
0 > x2− 9x+ 20 = (x− 4)(x− 5) is 4 < x < 5. So, we may assume n < 0. Then, we
see that n + 20

n is always negative, as n < 0. So, the inequality is always satisfied
if if n < 0. Thus, S coincides with the set of negative integers. So, its maximum is
−1.
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(b) See the solution for (c) but substitute C = 1017 and α =
√

3.

(c) We seek the largest n ∈ Z s.t. αn ≤ C. The natural logarithm is an increasing func-
tion. Thus, taking logarithms both sides of the inequality preserves the inequality,

and we get n ln(α) = ln(αn) ≤ ln(C). Thus, the maximum of S is b ln(C)
ln(α) c.

6. For the following complex numbers z compute the real and imaginary part, the complex
conjugate z̄, the absolute value |z|, the argument (also called phase) arg(z) and the inverse
z−1:

z =
1

2
+

√
3

2
i; z = 16i; z = 2 + 3i− 3ei

π
2 ; z = e−5πi + i.

Solution:

(a) Rez = 1
2 ; Imz =

√
3
2 ; z̄ = 1

2 −
√
3
2 i; arg z = π

3 ; |z| =
√

1
4 + 3

4 = 1;

(b) Rez = 0; Imz = 16; z̄ = −16i; arg z = π
2 ; |z| = 16;

(c) ei
π
2 = i, then z = 2; Rez = 2; Imz = 0; z̄ = 2; arg z = 0; |z| = 2;

(d) e−5πi = −1, since fot any n ∈ Z, e(t+2π)i = eti and e−πi = −1; then z = −1 + i;
Rez = −1; Imz = 1; z̄ = −1− i; arg z = 3π

4 ; |z| =
√

2.

7. Write the following complex numbers in the form x+ iy.

(a) i17

(b) 4−i
3−2i

(c) 2i(i− 1) +
(√

3 + i
)3

+ (1 + i)(1 + i)

Solution:

(a) i17 = i · i16 = i · (i4)4 = i · (1)4 = i

(b)
4− i
3− 2i

=
4− i
3− 2i

· 3 + 2i

3 + 2i
=

12 + 2− 3i+ 8i

9 + 4
=

14 + 5i

13
=

14

13
+ i

5

13

(c)

2i(i− 1) = 2(−1− i) = −2− 2i,(√
3 + i

)3
=
(√

3− i
)3

=
(√

3− i
)2 (√

3− i
)

=
(

3− 1− 2i
√

3
)(√

3− i
)

=
(

2− 2i
√

3
)(√

3− i
)

= 2
√

3− 2i− 6i− 2
√

3 = −8i,

(1 + i)(1 + i) = |1 + i|2 = 2.

So 2i(i− 1) +
(√

3 + i
)3

+ (1 + i)(1 + i) = −2− 2i− 8i+ 2 = −10i.
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8. Compute

(a) (1 + i
√

3)1980

(b) (1 + i
√

3)1988

Solution:

(a) We have

(1 +
√

3i)1980 = 21980ei
1980π

3 = 21980

(b) We have

(1 +
√

3i)1988 = 21988ei
1988π

3 = 21988
(

cos

(
2π

3

)
+ i sin

(
2π

3

))
=

= 21988

(
−1

2
+

√
3

2
i

)
= 21987(−1 +

√
3i).

9. Find all the solution of the following equations in C. [The unknown is z = x + iy, or, if you
prefer you could use polar form.]

(a) z2 = i

(b) z5 = 1.

(c) z2 = −3 + 4i.

Solution:

(a) We can either use Euler’s formula or we can solve it directly as described here. We
are searching for x + iy such that (x + iy)2 = i meaning (x2 − y2) + i(2xy) = i.
Clearly x2 − y2 = 0 and 2xy = 1. From the first equation we deduce that x = ±y.

x = y =⇒ x · (x) =
1

2
=⇒ x = ±

√
2

2

x = −y =⇒ x · (−x) =
1

2
=⇒ x2 = −1

2
(not valid since x ∈ R).

So the roots of i are
√
2
2 + i

√
2
2 and −

√
2
2 − i

√
2
2 .

To check the solution, one can compute
(√

2
2 + i

√
2
2

)2
− i and

(
−
√
2
2 − i

√
2
2

)2
− i.

(b) Write z using Euler’s formula: z = |z|eiθ where θ is the phase of z. Hence, z5 =
|z|5ei5θ = ei2πk ⇒ |z| = 1 and θ = 2π

5 k for k = 0, 1, 2, 3, 4.

(c) Write z using Euler’s formula: z = |z|eiθ. Note | − 3 + 4i| = 5 thus |z|2 = 5⇒ |z| =√
5. Note 2θ = arg(−3 + 4i) = arctan(− 4

3 ) + π+ 2πk = ϕ+ 2πk. Thus, θ = ϕ
2 + πk

for k = 0, 1.

10. In the context of complex numbers, state if the following statements are true or false.

(a) There exists a n ∈ N such that (1 + i
√

3)n is pure imaginary.
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(b) There exists a positive n ∈ N such that (1− i
√

3)n is real.

Solution:

(a) False. We have

(1 +
√

3i)n = 2nei
nπ
3 = 2n

(
cos(n

π

3
) + i sin(n

π

3
)
)

For the complex number to be pure imaginary, we require cos(nπ3 ) = 0 which means
n = 3

2 + 3k for some k ∈ Z. This condition cannot be satisfied if n ∈ N∗.

(b) True. Similar to the previous part we have

(1−
√

3i)n = 2ne−i
nπ
3 = 2n

(
cos(n

π

3
)− i sin(n

π

3
)
)

it is sufficient to find some n such that sin(nπ3 ) = 0. Take for example n = 3.

11. Show that for all θ ∈ R and for all n ∈ N

(cos(θ) + i sin(θ))n = (cos(nθ) + i sin(nθ)).

Solution: By definition of polar representation, we have eiθ = cos(θ) + i sin(θ). Then,
by the property of the exponents, we have

(cos(θ) + i sin(θ))n = (eiθ)n = einθ = cos(nθ) + i sin(nθ).

12. Prove that for all z1, z2 ∈ C,

(a) z1 = 0 if and only if |z1| = 0.

(b) z1
z2

= |z1|
|z2|e

i(α1−α2), where z2 6= 0 and

z1 = |z1|eiα1 , z2 = |z2|eiα2 , α1, α2 ∈ R

are the polar forms of the zi using Euler’s formula.

(c) | z1|z1| | = 1.

Solution:

(a) One direction is trivial. The other follows from if z = x + iy, then 0 = |z| =√
x2 + y2 ≥ |x| ⇒ x = 0 and similar for y.

(b) z1
z2

= |z1|eiα1

|z2|eiα2
= |z1|
|z2|e

i(α1−α2).

(c) Say z1 = a+ bi =⇒ |z1| =
√
a2 + b2 =⇒ z1

|z1| = a√
a2+b2

+ b√
a2+b2

i

=⇒ | z1|z1| | =
√

( a√
a2+b2

)2 + ( b√
a2+b2

)2 =
√

a2+b2

a2+b2 = 1.
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13. (Multiple choice) The set of all z ∈ C that satisfy the equation Im(z(2− i)) = 1 is

(a) A point.

(b) A line.

(c) A circle.

(d) Empty.

Solution: (b) is correct. Writing z = x+iy, we get that (x+iy)(2−i) = (2x+y)+i(2y−x)
so the equation becomes

2y − x = 1

whose solutions are the points on the line.

14. (Multiple choice) The set of all z ∈ C that satisfy the equation z̄ = i(z − 1) is

(a) A point.

(b) A line.

(c) A circle.

(d) Empty.

Solution: (d) is correct. Write z = x+ iy, with x, y ∈ R then the equation becomes,

x− iy = i(x+ iy − 1) =⇒ x− iy = ix− y − i

Meaning x = −y and −y = x − 1 which has no solutions; we conlude that the equation
has no solution.

15. (Multiple choice) The set of all z ∈ C that satisfy the equation z2 · z̄ = z is

(a) A point.

(b) A circle.

(c) A point and a circle.

(d) A disk.

Solution: (c) is correct. We can write the equation as z · ((zz̄) − 1) = 0. This means
that one solution is z = 0 which is one point. Also since zz̄ = |z|2 another set of solution
is |z|2 = 1 which are all points of the circle of radius 1 centered at the origin.

16. (Multiple choice) The set of all z ∈ C that satisfy the equation |z + 3i| = 3|z| is

(a) A point.

(b) A line.

(c) A circle.

(d) Empty.
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Solution:

(c) is correct. We square both terms and write z = x+ iy and we obtain

|z + 3i|2 = |x+ i(y + 3)|2 = x2 + (y + 3)2, (3|z|)2 = 9(x2 + y2)

So the equation turns into

x2 + (y + 3)2 = 9(x2 + y2)⇐⇒ x2 + y2 − 3

4
y =

9

8
⇐⇒ x2 +

(
y − 3

8

)2

=

(
9

8

)2

.

Then the solution are all the points of the circle of radius 9/8 centered at (0, 3/8).

17. Given the function f : C→ C defined as f(z) = 1+iz
iz+i

(a) find the domain of the function f . That is, determine the set Dom(f) ⊆ C such that
z ∈ Dom(f) if and only if f(z) is defined;

(b) find all complex numbers z such that f(z) = z;

(c) find the preimages of 3 + i.

Solution:

(a) Since f is a rational function (i.e., ratio of two polynomials), we need to determine
when the denominator is not 0. So, z ∈ Dom(f) if and only if iz + i 6= 0. Dividing
by i, we get z + 1 6= 0. So, we conclude that Dom(f) = C \ {−1}.

(b) You have to solve the equation f(z) = z, so

1 + iz

iz + i
= z

which turns out to be
z2 = −i, z 6= −1

the two solutions are z = ± 1√
2
(1− i). Verification: substitute the solutions into the

equation and compute. For example:

1 + i 1−i√
2

i 1−i√
2

+ i
−1− i√

2
=

√
2 + i+ 1

i+ 1 +
√

2i
−1− i√

2
=

2 +
√

2i+
√

2− i− 1−
√

2i− 1 + i+−
√

2√
2(i+ 1 +

√
2i)

= 0.

(c) You have to solve
1 + iz

iz + i
= 3 + i,

which is equivalent to

1 + iz = (3i− 1)z + 3i− 1, z 6= −1.

This is linear in z, and the unique solution is − 8
5 −

1
5 i. Verification: compute

f(− 8
5 −

1
5 i).
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