

# Analysis 1 - Exercise Set 3

Remember to check the correctness of your solutions whenever possible.

To solve the exercises you can use only the material you learned in the course.

1. Let [x] denote the integral part of a number  $x \in \mathbb{R}$ . Prove that, for every  $x \in \mathbb{R}$ , [x] = -[-x].

# Solution:

Recall the definition of integral part:

$$[x] = \begin{cases} \lfloor x \rfloor & \text{if } x \ge 0 \\ \lceil x \rceil & \text{if } x \le 0. \end{cases}$$

The question is symmetric between x and -x so we can take  $x \ge 0$  and since x = 0 is immediate as [0] = 0 we can suppose that x > 0. In this case x = [x] + a, where  $0 \le a < 1$ . Again we can suppose that a > 0 since if a = 0, then  $x = \lfloor x \rfloor = \lceil x \rceil = [x]$  and similarly  $-x = \lfloor -x \rfloor = \lceil -x \rceil = [-x]$ .

So -x = -[x] - a for 0 < a < 1. But in this case [-x] = -[x] which we wanted to prove.

2. Let  $a, b \in \mathbb{R}$ . Prove that  $||a| - |b|| \le |a - b|$  and  $||a| - |b|| \le |a + b|$ 

**Solution:** First, by the triangle inequality, we have

$$|a| = |a - b + b| \le |a - b| + |b|. \tag{1}$$

Similarly, we have

$$|b| = |b - a + a| < |a - b| + |a|, \tag{2}$$

where we also used |a - b| = |b - a|. Rearranging (1), we get

$$|a| - |b| \le |a - b|,\tag{3}$$

while rearranging (2), we get

$$|b| - |a| \le |a - b|. \tag{4}$$

By definition of absolute value, one among ||a| - |b|| = |a| - |b| and ||a| - |b|| = |b| - |a| holds true. Thus, by (3) and (4), we get  $||a| - |b|| \le |a - b|$ .

For the second part, we use the fact that |-b| = |b| and we apply the first part to the real numbers a and -b. Indeed, we get

$$||a| - |b|| = ||a| - |-b|| < |a - (-b)| = |a + b|.$$

3. Compute  $\sup S$  and  $\inf S$  where  $S \subseteq \mathbb{R}$  is defined as

- (a)  $S:=\bigcup_{n=1}^{\infty} \left[-1+\frac{1}{n},1-\frac{1}{n}\right]$ . Does S admit maximum and/or minimum?
- (b)  $S := \bigcap_{n=1}^{\infty} (-1 \frac{1}{n}, 1 + \frac{1}{n})$ . Does S admit maximum and/or minimum?

- (a) Note S = (-1, 1). Thus,  $\inf S = -1$  and  $\sup S = 1$ . They are not maxima or minima.
- (b) Note S = [-1, 1]. Thus, inf S = -1 and  $\sup S = 1$ . They are maxima or minima.
- 4. Compute min S where  $S \subseteq \mathbb{N}$  is defined as
  - (a)  $S := \{ n \in \mathbb{N} : \sqrt{n} > 17 \}$
  - (b)  $S := \{ n \in \mathbb{N} : \sum_{i=1}^{n} i \ge 17 \}$
  - (c)  $S := \{ n \in \mathbb{N} : \sum_{i=1}^{n} 2^{-i} > 1.7 \}$

## Solution:

- (a)  $n \in S \Leftrightarrow n > 17^2$ . Thus, the minimum of S is  $17^2 + 1$ .
- (b) Note  $\sum_{i=1}^n i = \frac{n(n+1)}{2}$ . First find  $x \in \mathbb{R}_+$  s.t.  $\frac{x(x+1)}{2} = 17$  which gives  $x = \frac{-1+\sqrt{137}}{2}$  from the quadratic formula. Now note  $11^2 < 137 < 12^2$  hence  $x \in [\frac{-1+11}{2}, \frac{-1+12}{2}] = [5, 5.5]$ . Thus, the minimum of S is  $\lceil x \rceil = 6$ .
- (c) Note  $\sum_{i=1}^{n} 2^{-i} = \frac{1}{2} \frac{1 (\frac{1}{2})^n}{1 \frac{1}{2}} = 1 (\frac{1}{2})^n < 1.7$ . Thus, the set is empty and the minimum is not defined.

5. Compute  $\max S$  where  $S \subseteq \mathbb{Z}$  is defined as

- (a)  $S = \{ n \in \mathbb{Z} \mid n \neq 0 \text{ and } n + \frac{20}{n} < 9 \}$
- (b)  $S = \{ n \in \mathbb{Z} \mid (\sqrt{3})^n < 10^{17} \}.$
- (c)  $S = \{n \in \mathbb{Z} \mid \alpha^n \leq C\}$  where  $\alpha > 1$  and C > 1 are constants. [You must discuss how max S varies, when  $\alpha$  and C vary.]

#### **Solution:**

(a) If n > 0,  $n + \frac{20}{n} < 9 \Leftrightarrow 0 > n^2 - 9n + 20 = (n-4)(n-5)$  from which we see that if we are restricted to natural numbers this can never be satisfied, as the solution of  $0 > x^2 - 9x + 20 = (x-4)(x-5)$  is 4 < x < 5. So, we may assume n < 0. Then, we see that  $n + \frac{20}{n}$  is always negative, as n < 0. So, the inequality is always satisfied if if n < 0. Thus, S coincides with the set of negative integers. So, its maximum is

- (b) See the solution for (c) but substitute  $C = 10^{17}$  and  $\alpha = \sqrt{3}$ .
- (c) We seek the largest  $n \in \mathbb{Z}$  s.t.  $\alpha^n \leq C$ . The natural logarithm is an increasing function. Thus, taking logarithms both sides of the inequality preserves the inequality, and we get  $n \ln(\alpha) = \ln(\alpha^n) \leq \ln(C)$ . Thus, the maximum of S is  $\lfloor \frac{\ln(C)}{\ln(\alpha)} \rfloor$ .
- 6. For the following complex numbers z compute the real and imaginary part, the complex conjugate  $\bar{z}$ , the absolute value |z|, the argument (also called phase)  $\arg(z)$  and the inverse  $z^{-1}$ :

$$z = \frac{1}{2} + \frac{\sqrt{3}}{2}i;$$
  $z = 16i;$   $z = 2 + 3i - 3e^{i\frac{\pi}{2}};$   $z = e^{-5\pi i} + i.$ 

(a) 
$$\operatorname{Re} z = \frac{1}{2}$$
;  $\operatorname{Im} z = \frac{\sqrt{3}}{2}$ ;  $\bar{z} = \frac{1}{2} - \frac{\sqrt{3}}{2}i$ ;  $\operatorname{arg} z = \frac{\pi}{3}$ ;  $|z| = \sqrt{\frac{1}{4} + \frac{3}{4}} = 1$ ;

(b) Re
$$z = 0$$
; Im $z = 16$ ;  $\bar{z} = -16i$ ; arg  $z = \frac{\pi}{2}$ ;  $|z| = 16$ ;

(c) 
$$e^{i\frac{\pi}{2}} = i$$
, then  $z = 2$ ;  $\text{Re}z = 2$ ;  $\text{Im}z = 0$ ;  $\bar{z} = 2$ ;  $\text{arg }z = 0$ ;  $|z| = 2$ ;

(d) 
$$e^{-5\pi i} = -1$$
, since fot any  $n \in \mathbb{Z}$ ,  $e^{(t+2\pi)i} = e^{ti}$  and  $e^{-\pi i} = -1$ ; then  $z = -1 + i$ ;  $\text{Re}z = -1$ ;  $\text{Im}z = 1$ ;  $\bar{z} = -1 - i$ ;  $\text{arg}z = \frac{3\pi}{4}$ ;  $|z| = \sqrt{2}$ .

- 7. Write the following complex numbers in the form x + iy.
  - (a)  $i^{17}$
  - (b)  $\frac{4-i}{3-2i}$

(c) 
$$2i(i-1) + \left(\sqrt{3}+i\right)^3 + (1+i)\overline{(1+i)}$$

#### **Solution:**

(a) 
$$i^{17} = i \cdot i^{16} = i \cdot (i^4)^4 = i \cdot (1)^4 = i$$

(b) 
$$\frac{4-i}{3-2i} = \frac{4-i}{3-2i} \cdot \frac{3+2i}{3+2i} = \frac{12+2-3i+8i}{9+4} = \frac{14+5i}{13} = \frac{14}{13} + i\frac{5}{13}$$

(c)

$$2i(i-1) = 2(-1-i) = -2 - 2i,$$

$$(\sqrt{3}+i)^3 = (\sqrt{3}-i)^3 = (\sqrt{3}-i)^2 (\sqrt{3}-i) = (3-1-2i\sqrt{3}) (\sqrt{3}-i)$$

$$= (2-2i\sqrt{3}) (\sqrt{3}-i) = 2\sqrt{3} - 2i - 6i - 2\sqrt{3} = -8i,$$

$$(1+i)\overline{(1+i)} = |1+i|^2 = 2.$$

So 
$$2i(i-1) + \left(\sqrt{3} + i\right)^3 + (1+i)(1+i) = -2 - 2i - 8i + 2 = -10i$$
.

- 8. Compute
  - (a)  $(1+i\sqrt{3})^{1980}$
  - (b)  $(1+i\sqrt{3})^{1988}$

(a) We have

$$(1+\sqrt{3}i)^{1980} = 2^{1980}e^{i\frac{1980\pi}{3}} = 2^{1980}$$

(b) We have

$$(1+\sqrt{3}i)^{1988} = 2^{1988}e^{i\frac{1988\pi}{3}} = 2^{1988}\left(\cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)\right) =$$
$$= 2^{1988}\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) = 2^{1987}(-1+\sqrt{3}i).$$

- 9. Find all the solution of the following equations in  $\mathbb{C}$ . [The unknown is z = x + iy, or, if you prefer you could use polar form.]
  - (a)  $z^2 = i$
  - (b)  $z^5 = 1$ .
  - (c)  $z^2 = -3 + 4i$ .

# Solution:

(a) We can either use Euler's formula or we can solve it directly as described here. We are searching for x+iy such that  $(x+iy)^2=i$  meaning  $(x^2-y^2)+i(2xy)=i$ . Clearly  $x^2-y^2=0$  and 2xy=1. From the first equation we deduce that  $x=\pm y$ .

$$x = y \Longrightarrow x \cdot (x) = \frac{1}{2} \Longrightarrow x = \pm \frac{\sqrt{2}}{2}$$

$$x = -y \Longrightarrow x \cdot (-x) = \frac{1}{2} \Longrightarrow x^2 = -\frac{1}{2} \pmod{\text{ not valid since } x \in \mathbb{R}}.$$

So the roots of i are  $\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$  and  $-\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}$ .

To check the solution, one can compute  $\left(\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2}\right)^2-i$  and  $\left(-\frac{\sqrt{2}}{2}-i\frac{\sqrt{2}}{2}\right)^2-i$ .

- (b) Write z using Euler's formula:  $z=|z|e^{i\theta}$  where  $\theta$  is the phase of z. Hence,  $z^5=|z|^5e^{i5\theta}=e^{i2\pi k}\Rightarrow |z|=1$  and  $\theta=\frac{2\pi}{5}k$  for k=0,1,2,3,4.
- (c) Write z using Euler's formula:  $z=|z|e^{i\theta}$ . Note |-3+4i|=5 thus  $|z|^2=5\Rightarrow |z|=\sqrt{5}$ . Note  $2\theta=\arg(-3+4i)=\arctan(-\frac{4}{3})+\pi+2\pi k=\varphi+2\pi k$ . Thus,  $\theta=\frac{\varphi}{2}+\pi k$  for k=0,1.
- 10. In the context of complex numbers, state if the following statements are true or false.
  - (a) There exists a  $n \in \mathbb{N}$  such that  $(1+i\sqrt{3})^n$  is pure imaginary.

(b) There exists a positive  $n \in \mathbb{N}$  such that  $(1 - i\sqrt{3})^n$  is real.

# Solution:

(a) False. We have

$$(1+\sqrt{3}i)^n = 2^n e^{i\frac{n\pi}{3}} = 2^n \left(\cos(n\frac{\pi}{3}) + i\sin(n\frac{\pi}{3})\right)$$

For the complex number to be pure imaginary, we require  $\cos(n\frac{\pi}{3}) = 0$  which means  $n = \frac{3}{2} + 3k$  for some  $k \in \mathbb{Z}$ . This condition cannot be satisfied if  $n \in \mathbb{N}^*$ .

(b) True. Similar to the previous part we have

$$(1 - \sqrt{3}i)^n = 2^n e^{-i\frac{n\pi}{3}} = 2^n \left(\cos(n\frac{\pi}{3}) - i\sin(n\frac{\pi}{3})\right)$$

it is sufficient to find some n such that  $\sin(n\frac{\pi}{3}) = 0$ . Take for example n = 3.

11. Show that for all  $\theta \in \mathbb{R}$  and for all  $n \in \mathbb{N}$ 

$$(\cos(\theta) + i\sin(\theta))^n = (\cos(n\theta) + i\sin(n\theta)).$$

**Solution:** By definition of polar representation, we have  $e^{i\theta} = \cos(\theta) + i\sin(\theta)$ . Then, by the property of the exponents, we have

$$(\cos(\theta) + i\sin(\theta))^n = (e^{i\theta})^n = e^{in\theta} = \cos(n\theta) + i\sin(n\theta)$$

12. Prove that for all  $z_1, z_2 \in \mathbb{C}$ ,

- (a)  $z_1 = 0$  if and only if  $|z_1| = 0$ .
- (b)  $\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} e^{i(\alpha_1 \alpha_2)}$ , where  $z_2 \neq 0$  and

$$z_1 = |z_1|e^{i\alpha_1}, \quad z_2 = |z_2|e^{i\alpha_2}, \quad \alpha_1, \ \alpha_2 \in \mathbb{R}$$

are the polar forms of the  $z_i$  using Euler's formula.

(c)  $\left| \frac{z_1}{|z_1|} \right| = 1$ .

# Solution:

- (a) One direction is trivial. The other follows from if z=x+iy, then  $0=|z|=\sqrt{x^2+y^2}\geq |x|\Rightarrow x=0$  and similar for y.
- (b)  $\frac{z_1}{z_2} = \frac{|z_1|e^{i\alpha_1}}{|z_2|e^{i\alpha_2}} = \frac{|z_1|}{|z_2|}e^{i(\alpha_1 \alpha_2)}$ .
- (c) Say  $z_1 = a + bi$   $\Longrightarrow$   $|z_1| = \sqrt{a^2 + b^2}$   $\Longrightarrow$   $\frac{z_1}{|z_1|} = \frac{a}{\sqrt{a^2 + b^2}} + \frac{b}{\sqrt{a^2 + b^2}}i$   $\Longrightarrow |\frac{z_1}{|z_1|}| = \sqrt{(\frac{a}{\sqrt{a^2 + b^2}})^2 + (\frac{b}{\sqrt{a^2 + b^2}})^2} = \sqrt{\frac{a^2 + b^2}{a^2 + b^2}} = 1.$

- 13. (Multiple choice) The set of all  $z \in \mathbb{C}$  that satisfy the equation  $\mathrm{Im}(z(2-i))=1$  is
  - (a) A point.
  - (b) A line.
  - (c) A circle.
  - (d) Empty.

**Solution:** (b) is correct. Writing z = x + iy, we get that (x + iy)(2 - i) = (2x + y) + i(2y - x) so the equation becomes

$$2y - x = 1$$

whose solutions are the points on the line.

- 14. (Multiple choice) The set of all  $z \in \mathbb{C}$  that satisfy the equation  $\bar{z} = i(z-1)$  is
  - (a) A point.
  - (b) A line.
  - (c) A circle.
  - (d) Empty.

**Solution:** (d) is correct. Write z = x + iy, with  $x, y \in \mathbb{R}$  then the equation becomes,

$$x - iy = i(x + iy - 1) \Longrightarrow x - iy = ix - y - i$$

Meaning x = -y and -y = x - 1 which has no solutions; we conclude that the equation has no solution.

- 15. (Multiple choice) The set of all  $z \in \mathbb{C}$  that satisfy the equation  $z^2 \cdot \bar{z} = z$  is
  - (a) A point.
  - (b) A circle.
  - (c) A point and a circle.
  - (d) A disk.

**Solution:** (c) is correct. We can write the equation as  $z \cdot ((z\bar{z}) - 1) = 0$ . This means that one solution is z = 0 which is one point. Also since  $z\bar{z} = |z|^2$  another set of solution is  $|z|^2 = 1$  which are all points of the circle of radius 1 centered at the origin.

- 16. (Multiple choice) The set of all  $z \in \mathbb{C}$  that satisfy the equation |z+3i|=3|z| is
  - (a) A point.
  - (b) A line.
  - (c) A circle.
  - (d) Empty.

(c) is correct. We square both terms and write z = x + iy and we obtain

$$|z+3i|^2 = |x+i(y+3)|^2 = x^2 + (y+3)^2,$$
  $(3|z|)^2 = 9(x^2 + y^2)$ 

So the equation turns into

$$x^{2} + (y+3)^{2} = 9(x^{2} + y^{2}) \iff x^{2} + y^{2} - \frac{3}{4}y = \frac{9}{8} \iff x^{2} + \left(y - \frac{3}{8}\right)^{2} = \left(\frac{9}{8}\right)^{2}.$$

Then the solution are all the points of the circle of radius 9/8 centered at (0, 3/8).

- 17. Given the function  $f \colon \mathbb{C} \to \mathbb{C}$  defined as  $f(z) = \frac{1+iz}{iz+i}$ 
  - (a) find the domain of the function f. That is, determine the set  $\text{Dom}(f) \subseteq \mathbb{C}$  such that  $z \in \text{Dom}(f)$  if and only if f(z) is defined;
  - (b) find all complex numbers z such that f(z) = z;
  - (c) find the preimages of 3 + i.

## Solution:

- (a) Since f is a rational function (i.e., ratio of two polynomials), we need to determine when the denominator is not 0. So,  $z \in \text{Dom}(f)$  if and only if  $iz + i \neq 0$ . Dividing by i, we get  $z + 1 \neq 0$ . So, we conclude that  $\text{Dom}(f) = \mathbb{C} \setminus \{-1\}$ .
- (b) You have to solve the equation f(z) = z, so

$$\frac{1+iz}{iz+i} = z$$

which turns out to be

$$z^2 = -i, \quad z \neq -1$$

the two solutions are  $z = \pm \frac{1}{\sqrt{2}}(1-i)$ . Verification: substitute the solutions into the equation and compute. For example:

$$\frac{1+i\frac{1-i}{\sqrt{2}}}{i\frac{1-i}{\sqrt{2}}+i} - \frac{1-i}{\sqrt{2}} = \frac{\sqrt{2}+i+1}{i+1+\sqrt{2}i} - \frac{1-i}{\sqrt{2}} = \frac{2+\sqrt{2}i+\sqrt{2}-i-1-\sqrt{2}i-1+i+-\sqrt{2}}{\sqrt{2}(i+1+\sqrt{2}i)} = 0.$$

(c) You have to solve

$$\frac{1+iz}{iz+i} = 3+i,$$

which is equivalent to

$$1 + iz = (3i - 1)z + 3i - 1, \quad z \neq -1.$$

This is linear in z, and the unique solution is  $-\frac{8}{5} - \frac{1}{5}i$ . Verification: compute  $f(-\frac{8}{5} - \frac{1}{5}i)$ .