
Analysis I (English)
Roberto Svaldi and Stefano Filipazzi
Fall Semester 2021–2022

Analysis 1 - Exercise Set 2

Remember to check the correctness of your solutions whenever possible.

To solve the exercises you can use only the material you learned in the course.

1. (a) Let p ∈ N be a prime number. Prove that
√
p is not rational.

(b) Show that
√

7 +
√

17 is irrational. (Hint: Use part (a) to prove that
√

17 is irrational.

Now assume that
√

7 +
√

17 is rational and show that it contradicts the fact that
√

17 is
irrational.)

(c) Show that
√

2 + 3
√

3 is irrational. (Hint: Let r =
√

2 + 3
√

3 and assume it is rational.
Compute (r −

√
2)3 and use the result that you obtained plus the assumption on the

rationality of r to find a contradiction.)

Solution:

(a) Let
√
p = a

b such that gcd(a, b) = 1. We square both sides to get

p =
a2

b2

Now we multiply both sides with b2 to get

a2 = pb2

Clearly p is a factor of right hand side so p must be a factor of left hand side too.
But since p is a factor of a2, a is an integer and p is a prime number, we deduce
that p is also a factor of a. Hence we can find an integer c such that a = pc. By
replacing this in the above equation we get

a2 = p2c2 = pb2 =⇒ b2 = pc2

Using an argument similar to before we can deduct that p is also a factor of b. This
is a contradiction since we assumed that gcd(a, b) = 1 but p divides both a and b.

(b) Let r =
√

7 +
√

17. Since 17 is a prime number,
√

17 is irrational by part (a). Now
we can rewrite r as

r2 − 7 =
√

17

If r is rational then so is r2 − 7 and this is a contradiction since
√

17 is irrational.

(c) Let r =
√

2 + 3
√

3. We have

(r −
√

2)3 = 3

and then

0 = r3 − 3r2
√

2 + 6r − 2
√

2− 3 = r3 + 6r − 3−
√

2(3r2 + 2).

So
√

2 =
r3 + 6r − 3

3r2 + 2
.

If r is a rational number then the right hand side becomes rational. This contradicts
the fact that

√
2 is irrational.



2. Let S be a subset of R. Let a be a lower bound (respectively an upper bound) for S. Show
that any real number b such that b < a (respectively b > a) then b is also a lower bound (resp.
an upper bound) for S.

Solution:
Lower bound case: Let a be a lower bound for S ⇔ ∀x ∈ S b < a ≤ x ⇒ ∀x ∈ S b <
x⇒ b is a lower bound for S.
Upper bound case: Let a be an upper bound for S ⇔ ∀x ∈ S b > a ≥ x⇒ ∀x ∈ S b >
x⇒ b is an upper bound for S.

3. Let A be a bounded interval in R, i.e., A is a subset of R of either one of the following forms:
[a, b], or ]a, b[, or [a, b[, or ]a, b], with a, b ∈ R and a < b. State if the following statements are
true or false. If you true, explain why. If false, find an example of an interval that contradicts
that statement.

(a) sup(A) ∈ A and inf(A) ∈ A.

(b) If sup(A) ∈ A and inf(A) ∈ A then A is closed.

(c) If A is closed then sup(A) ∈ A and inf(A) ∈ A.

(d) If sup(A) 6∈ A and inf(A) 6∈ A then A is open.

(e) If A is open then sup(A) 6∈ A and inf(A) 6∈ A.

Solution:

(a) False. For example, take the interval A = [1, 2[ .

(b) True. Verification: Assume that it is false. Then A is not closed, for example
A = [a, b[= {x ∈ R : a ≤ x < b}. We observe that b is an upper bound and that if
c < b is another upper bound, then c > a and we know from the lecture that there
exists a real number d such that c < d < b. Then d ∈ A, so c cannot be an upper
bound. This shows that sup(A) = b. But b /∈ A. Hence, we reached a contradiction.
A similar argument for inf(A) = a works if A =]a, b[ or A =]a, b].

(c) True. If A is closed there exist real numbers a < b such that A = [a, b]. Then,
a = min(A) = sup(A) and b = max(A) = sup(A).

(d) True. Verification: Assume that it is false. Then A is not open, for example
A = [a, b[= {x ∈ R : a ≤ x < b}. An argument as above shows that inf(A) = a. But
a ∈ A. Hence, we have a contradiction. A similar argument for sup(A) = b works if
A = [a, b] or A =]a, b].

(e) True. If A is open there exist real numbers a < b such that A =]a, b[. An argument
as in the previous case shows that sup(A) = b and inf(A) = a. Hence, they do not
belong to A.

4. Let A be a bounded interval in R, i.e., A is a subset of R of either one of the following forms:
[a, b], or ]a, b[, or [a, b[, or ]a, b], with a, b ∈ R and a < b. Show that inf A = a, supA = b.
When is the infimum (resp. maximum) of A a minimum (resp. a maximum)?
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Solution: Let us show that inf A = a. We first show that a is a lower bound for A. This
follows since ∀d ∈ A, {

d ≥ a, if A = [a, b] or A = [a, b[

d > a, if A =]a, b] or A =]a, b[.

We need to show that a is the largest lower bound for A, that is, we need to show that
if c is a real number such that c > a, then c is not a lower bound for A. To show this,
it suffices to show that there exists an element l of A such that l < c. Since c > a, then
a < a + c−a

2 < c. If a + c−a
2 ∈ A, it suffices to take l := a + c−a

2 . If a + c−a
2 6∈ A, then

c > b, and it suffices to take l := b.

The proof that supA = b is similar. We first show that b is an upper bound for A. This
follows since ∀e ∈ A, {

e ≤ b, if A = [a, b] or A =]a, b]

e < b, if A =]a, b[ or A = [a, b[.

We need to show that b is the smaller upper bound for A, that is, we need to show that
if f is a real number such that f < b, then f is not a lower bound for A. To show this, it
suffices to show that there exists an element m of A such that m > f . Since f < b, then
f < b + f−b

2 < b. If b + f−b
2 ∈ A, it suffices to take m := b + f−b

2 . If b + f−b
2 6∈ A, then

also f < a, and it suffices to take m := a.

In view of the above, then A has a minimum (resp. maximum) if and only if a ∈ A
(resp. b ∈ A). Hence A has has a minimum (resp. maximum) if and only if A = [a, b] or
A = [a, b[ (resp. A =]a, b] or A = [a, b]).

5. Let S be a subset of R. Show that if sup(S), inf(S), max(S), min(S) exist, then they are
unique.

Solution: Suppose that the supremum for a non-empty set S ⊂ R is not unique. Then
there are at least two ’numbers’ a < b (we allow b = +∞) s.t. they are the supremum
of S, so they are both a smallest upper bound for S. But b can obviously not be the
supremum since it cannot be the smallest upper bound, since a is an upper bound smaller
than b. Hence, our assumption that there are more than one suprema of S must be false.
Apply a similar argument for the infimum.

The results for maximum and minimum are due to the fact that they are special cases of
supremum and infimum respectively.

6. Let S ⊆ R be the subset of the real numbers defined as S := {x ∈ R |x ∈ Q and x3 ≥ 5}.

(a) Show that S is not empty (i.e., exhibit an element of S).

(b) Show that 3
√

5 is a lower bound for S.

(c) Show that inf(S) = 3
√

5. (Hint: you should use the denseness of Q in this step).

Hint: you can use the fact that every real number has a unique real cubic root, and that a3 ≤ b3
if and only if a ≤ b.

Solution:
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(a) Consider 10. As it is a natural number, it is a rational number. Furthermore,
103 = 1000 > 5. Thus, 10 ∈ S.

(b) To show that 3
√

5 is a lower bound, we have to show the following:

∀x ∈ S, x ≥ 3
√

5.

Fix x ∈ S. Then, by definition of S, we have x3 ≥ 5. By the hint, this fact is
equivalent to x ≥ 3

√
5. This concludes the proof of (a).

(c) We have showed that 3
√

5 is a lower bound. To show it is the infimum, we have to
show the following:

∀ε > 0,∃x ∈ S, 3
√

5 ≤ x ≤ 3
√

5 + ε.

Fix ε > 0. Then, we have 3
√

5 < 3
√

5 + ε. By denseness of Q, there exists x ∈ Q such
that 3

√
5 < x < 3

√
5 + ε. By the hint, the first inequality, i.e., 3

√
5 < x, is equivalent

to x3 > 5. Since x ∈ Q, this shows that x ∈ S. Thus, we found the sought element
of S in the interval [ 3

√
5, 3
√

5 + ε]. This concludes the proof.

7. For each of the following sets, check if they are bounded or unbounded. When the set is
bounded from above or below, give a few examples of lower and upper bounds, then compute
the supremum and infimum and check if maximum and minimum exist.

(a) A = {x ∈ R | x2 ≤ 2}.
(b) B = {x ∈ R | x ∈ Q and x2 ≤ 2}.
(c) C = {(−1)n + 1

n+1 |n ∈ N}.

Solution:

(a) This set is bounded. In fact, −2 (resp. 2) is a lower bound (resp. upper bound).
We prove the case of −2, the other is completely analogous. To show that −2 is a
lower bound, we need to show that any a ∈ A satisfies −2 ≤ a. If a ≥ 0, there is
nothing to prove. If a < 0, then it suffices to observe that for any x < y < 0, then
0 < y2 < x2 and this just follows from the definition of square of a real number.
Hence, a2 ≤ 2 < (−2)2 implies that −2 < a. As that holds for any a ∈ A, a < 0,
we are done.

We claim that the supremum is
√

2 and infimum −
√

2. As ±
√

2 ∈ A, then they are
also maximum and minimum, respectively. Let us prove that

√
2 is the supremum,

the other case is analogous. As for positive numbers

0 < s < t =⇒ 0 < s2 < t2, (1)

then, since (
√

2)2 = 2, it follows that z ≤
√

2 for any z ∈ A. Hence,
√

2 is an upper
bound for A. Let us assume that

√
2 is not the smallest of the upper bounds, that

is inf A <
√

2. Let l′ := supA. By the density of Q in R, there exists c ∈ Q such
that

l′ < c <
√

2.

Then c2 < 2, hence c ∈ A and l′ < c which gives a contradiction, since we assumed
that l′ is the supremum of A.
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(b) This set is bounded, as it is a subset of the set in part (a). By what showed in part
(a),
√

2 is an upper bound and −
√

2 is a lower bound. We claim that
√

2 = sup(B)
(the argument for −

√
2 = inf(B) is analogous). By denseness of Q, for every ε > 0,

we can find a rational number r such that
√

2− ε < rn <
√

2. Then, rn ∈ B, as it is
positive, rational, and r2n < 4. Thus,

√
2 satisfies the characterization of supremum

given in class. Since sup(B) =
√

2, B ⊂ Q and
√

2 6∈ Q, it follows that B has no
maximum. Similarly, as inf(B) = −

√
2, B has no minimum.

(c) The set is bounded because −1 is a lower bound and 2 is an upper bound, sup(C) =
2, inf(C) = −1, the maximum is 2 but the minimum does not exist. To verify that
2 is the maximum and the supremum we observe that it is an upper bound and that
(−1)n + 1

n+1 = 2 if n = 0.

To verify that inf(C) = −1, we observe that if a > −1, then a > (−1)2m+1+ 1
2m+2 =

−1+ 1
2m+2 is satisfied for 2m+1 > 1

a+1 −1. So, no number a > −1 is a lower bound
for C. Thus, as −1 is a lower bound, it is the infimum.

To verify that the minimum does not exist, we observe that (−1)n + 1
n+1 > −1 for

all n ∈ N (treat the cases n = 0, n ≥ 1 odd, n ≥ 1 even separately).

8. Let a be a real number. Assume that a ≥ 0. Prove that a = 0 if and only if for any ε > 0, a ≤ ε.

Solution:
(⇒) If a = 0 then it is smaller than any positive ε.
(⇐) Suppose that ∀ε > 0 a ≤ ε and a ∈ R+. Assume a > 0. Then ∃ε > 0 (take ε = a

2 )
s.t. a > ε = a

2 > 0. This leads to a contradiction, hence our assumption that a > 0 must
be false. Since a is non-negative we must have a = 0.

9. Let L and L′ be two real numbers. Prove that the following are equivalent:

(a) L = L′;

(b) for every ε > 0, |L− L′| ≤ ε.

Solution:
(⇒) If L = L′, then |L− L′| = 0. Thus, given any positive number ε, |L− L′| = 0 ≤ ε.
(⇐) Suppose that for every ε > 0, |L − L′| ≤ ε. Assume by contradiction that L 6= L′.
Then, by definition of absolute value, |L − L′| > 0, as the absolute value is always non-

negative and it is 0 only if the input is 0. Now, choose ε = |L−L′|
2 . Then, by our

assumption, we have |L − L′| ≤ ε = |L−L′|
2 . This is absurd, as |L − L′| ≤ |L−L

′|
2 is false,

as |L− L′| > 0.

10. Let S ⊆ R be a non-empty subset. Assume that S is bounded from above and that sup(S) 6∈ S.
Show that the following fact holds: for every ε > 0, S∩] sup(S) − ε, sup(S)[ is infinite (i.e.,
there are infinitely many elements of S in ] sup(S)− ε, sup(S)[).
Hint: In this problem, you can freely use that a finite non-empty set has both maximum and
minimum.
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Solution: We argue by contradiction. Let S be a set as in the statement, and assume
that the claim does not hold. Then, there exists ε > 0 such that S∩] sup(S)− ε, sup(S)[ is
finite. Fix this ε > 0. By the characterization of the supremum given in homework 2, we
know S∩] sup(S)− ε, sup(S)[ is not empty. So, S∩] sup(S)− ε, sup(S)[ is non-empty and

finite, and we can consider its maximum s0. Now, define δ = sup(S)−s0
2 , i.e., half of the

distance between s0 and sup(S). Notice that this is a positive number, as s0 < sup(S).
Notice that, as s0 ∈] sup(S)−ε, sup(S)[, we have sup(S)−s0 < ε. Thus, we have 0 < δ < ε.

Now, we use the characterization of the supremum given in class. Thus, there is s′ ∈ S
such that sup(S) − δ ≤ s′ ≤ sup(S). Since we know sup(S) 6∈ S, we also know that
s′ 6= sup(S), thus s′ < sup(S). Fix such s′. Then, we have

sup(S)− ε < s0 = sup(S)− 2δ < sup(S)− δ ≤ s′ < sup(S).

In particular, s′ ∈ (sup(S) − ε, sup(S)) and s′ > s0. This contradicts the fact that s0 is
the maximum of S∩] sup(S)− ε, sup(S)[. This provides the sought contradiction, and the
claim follows.
Alternative way to argue (only sketch): alternatively, once we produce the number
s0 as above, one can show that s0 = max(S), and this would give a contradiction as well.

11. Let S be a non-empty and bounded subset of R. We define

S′ := {x ∈ R| − x ∈ S}.

Show that

(a) If M is an upper bound of S, then −M is a lower bound of S′.

(b) If m is a lower bound of S, then −m is an upper bound of S′.

(c) sup(S) = − inf(S′).

(d) inf(S) = − sup(S′).

Solution:

(a) If M is an upper bound of S, then by definition x ≤ M for all x ∈ S. This means
that, −x ≥ −M for all x ∈ S, and so y ≥ −M for all y ∈ S′. This shows that −M
is a lower bound of S′;

(b) If m is a lower bound of S, then by definition x ≥ m for all x ∈ S. Then −x ≤ −m
for all x ∈ S and so y ≤ −m for all y ∈ S′. This shows that −m is an upper bound
of S′;

(c) Let b = sup(S). Then [b,+∞[ is the set of all the upper bounds for S. According
to part (a) the set ]−∞,−b[ consists of all the lower bounds for S′. By definition,
inf(S′) is the greatest lower bound, so inf(S′) = −b = − sup(S);

(d) Let b = inf(S). Then ] −∞, b] is the set of all the lower bounds for S. According
to part (b) the set [−b,∞[ consists of all the upper bounds for S′. By definition,
sup(S′) is the smallest lower bound, so sup(S′) = −b = − inf(S).

12. Let S be the subset of R defined as

S :=

∞⋂
n=1

[0, 1 +
1

n
]
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Compute m := supS. Is m the maximum of S? (Hint: x ∈ S ⇐⇒ ∀n ∈ N, x ∈ [0, 1 + 1
n ])

Solution: First, observe that 0 ≤ 1 ≤ 1 + 1
n for every n ∈ N. Thus, 1 ∈ S. Furthermore,

for every n ∈ N, 1+ 1
n is an upper bound: indeed, S ⊆ [0, 1+ 1

n ] and 1+ 1
n = max([0, 1+ 1

n ]).
Now, we claim that 1 = sup(S). Assume by contradiction this is not the case. Then, as
1 ∈ S, m > 1. Then, if we choose a natural number n > 1

m−1 , we have 1 + 1
n < m. Since

1 + 1
n is an upper bound, m is not the least upper bound of S, contradicting the fact that

m = sup(S). Thus, m = 1. Since 1 ∈ S, we have m = max(S).

13. (Multiple choice) The subset S of R2 defined as1

S := {(x, y) ∈ R2 |x = −y,−y = x− 1}

is:

(a) A point.

(b) A line.

(c) A circle.

(d) Empty.

Solution:

(d) is correct. We must have x = −y and −y = x − 1 which has no solutions since the
system of equations {

x = −y
−y = x− 1

implies that −1 = 0, clearly impossible. We conclude that no point in R2 can satisfy both
the equations defining S and so, S =.

14. (Multiple choice) The subset S of R2 defined as

S := {(x, y) ∈ R2 |
√
x2 + (y + 3)2 = 3

√
x2 + y2}

is:

(a) A point.

(b) A line.

(c) A circle.

(d) Empty.

Solution:

(c) is correct. We square both terms and write and we obtain

x2 + (y + 3)2 = 9(x2 + y2)⇐⇒ x2 + y2 − 3

4
y =

9

8
⇐⇒ x2 +

(
y − 3

8

)2

=

(
9

8

)2

.

Then the solution are all the points of the circle of radius 9/8 centered at (0, 3/8).

1In this exercise (x, y) does not denote an open interval between x and y, but it instead denotes the point of
coordinates x and y in R2
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