Analysis T (English)
Roberto Svaldi and Stefano Filipazzi

Fall Semester 2021-2022

Analysis 1 - Exercise Set 2

Remember to check the correctness of your solutions whenever possible.
To solve the exercises you can use only the material you learned in the course.

1. (a) Let p € N be a prime number. Prove that /p is not rational.

(b) Show that /7 4+ /17 is irrational. (Hint: Use part (a) to prove that \/17 is irrational.
Now assume that \/7 + /17 is rational and show that it contradicts the fact that VT is
irrational.)

(c) Show that /2 + /3 is irrational. (Hint: Let r = /2 4+ V/3 and assume it is rational.
Compute (r — \/2)3 and use the result that you obtained plus the assumption on the
rationality of v to find a contradiction.)

Solution:

(a) Let \/p = ¢ such that ged(a,b) = 1. We square both sides to get

a
b= 2
Now we multiply both sides with b? to get
a? = pb?

Clearly p is a factor of right hand side so p must be a factor of left hand side too.
But since p is a factor of a2, a is an integer and p is a prime number, we deduce
that p is also a factor of a. Hence we can find an integer ¢ such that a = pc. By
replacing this in the above equation we get

0% = p2c? = pb? — b = pc?

Using an argument similar to before we can deduct that p is also a factor of b. This
is a contradiction since we assumed that ged(a,b) = 1 but p divides both a and b.

(b) Let r = +/7+ +/17. Since 17 is a prime number, v/17 is irrational by part (a). Now
we can rewrite r as
r? 7= V1T

If r is rational then so is 72 — 7 and this is a contradiction since v/17 is irrational.

(c) Let r = V2 + /3. We have
(r—v2)°>=3

and then
0=1"—3r2V2+6r —2v2 -3 =1"+6r — 3 —v2(3r> +2).

So 5
> 4 6r —3
2= _°
V2 3r2 +2
If r is a rational number then the right hand side becomes rational. This contradicts
the fact that v/2 is irrational.




2. Let S be a subset of R. Let a be a lower bound (respectively an upper bound) for S. Show
that any real number b such that b < a (respectively b > a) then b is also a lower bound (resp.
an upper bound) for S.

Solution:

Lower bound case: Let a be a lower bound for S & Vr e S b<a<z=VreSlS b<
x = b is a lower bound for S.

Upper bound case: Let a be an upper bound for S <Vr e S b>a>z=VrxeS b>
x = b is an upper bound for S.

3. Let A be a bounded interval in R, i.e., A is a subset of R of either one of the following forms:
[a,b], or ]a,b[, or [a,b], or |a,b], with a,b € R and a < b. State if the following statements are
true or false. If you true, explain why. If false, find an example of an interval that contradicts
that statement.

(a) sup(A) € A and inf(A4) € A.

(b) If sup(A) € A and inf(A) € A then A is closed.
(c) If A is closed then sup(A) € A and inf(A) € A.

(d) If sup(A) ¢ A and inf(A) ¢ A then A is open.
)

(e) If A is open then sup(A) ¢ A and inf(A4) ¢ A.

Solution:

(a) False. For example, take the interval A = [1,2].

(b) True. Verification: Assume that it is false. Then A is not closed, for example
A=la,b={zr € R:a < x <b}. We observe that b is an upper bound and that if
¢ < b is another upper bound, then ¢ > a and we know from the lecture that there
exists a real number d such that ¢ < d < b. Then d € A, so ¢ cannot be an upper
bound. This shows that sup(A) = b. But b ¢ A. Hence, we reached a contradiction.
A similar argument for inf(A) = a works if A =|a,b] or A =|a, b].

(¢) True. If A is closed there exist real numbers a < b such that A = [a,b]. Then,
a =min(A) = sup(A) and b = max(A) = sup(A).

(d) True. Verification: Assume that it is false. Then A is not open, for example
A=la,b[={zr € R:a <z <b}. An argument as above shows that inf(A) = a. But
a € A. Hence, we have a contradiction. A similar argument for sup(A) = b works if
A =[a,b] or A =]a,b].

(e) True. If A is open there exist real numbers a < b such that A =Ja, b[. An argument
as in the previous case shows that sup(A4) = b and inf(A) = a. Hence, they do not
belong to A.

4. Let A be a bounded interval in R, i.e., A is a subset of R of either one of the following forms:
[a,b], or |a,b], or [a,b], or ]a,b], with a,b € R and a < b. Show that inf A = a, supA = b.
When is the infimum (resp. maximum) of A a minimum (resp. a maximum)?
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Solution: Let us show that inf A = a. We first show that a is a lower bound for A. This
follows since Vd € A,

d>a, if A=Ja,b]or A=]la,b|

d>a, if A=la,b]or A=la,bl

We need to show that a is the largest lower bound for A, that is, we need to show that
if ¢ is a real number such that ¢ > a, then c¢ is not a lower bound for A. To show this,
it suffices to show that there exists an element [ of A such that [ < ¢. Since ¢ > a, then
a<a+ S* <ec Ifa+ S* € A, it suffices to take [ :=a + 5%, If a + 5% € A, then
¢ > b, and it suffices to take [ :=b.

The proof that sup A = b is similar. We first show that b is an upper bound for A. This
follows since Ve € A,

e<b, if A=]a,b]or A=]a,b
e<b, if A=la,b[or A=][a,b].

We need to show that b is the smaller upper bound for A, that is, we need to show that
if f is a real number such that f < b, then f is not a lower bound for A. To show this, it
suffices to show that there exists an element m of A such that m > f. Since f < b, then
f<b+% < b. Ifb—l—% € A, it suffices to take m ::b—|—%. Ifb—l—% ¢ A, then
also f < a, and it suffices to take m := a.

In view of the above, then A has a minimum (resp. maximum) if and only if a € A

(resp. b € A). Hence A has has a minimum (resp. maximum) if and only if A = [a,b] or
A = [a,b] (resp. A =la,b] or A = [a,b]).

5. Let S be a subset of R. Show that if sup(S), inf(S), max(S), min(S) exist, then they are
unique.

Solution: Suppose that the supremum for a non-empty set S C R is not unique. Then
there are at least two 'numbers’ a < b (we allow b = +00) s.t. they are the supremum
of S, so they are both a smallest upper bound for S. But b can obviously not be the
supremum since it cannot be the smallest upper bound, since a is an upper bound smaller
than b. Hence, our assumption that there are more than one suprema of S must be false.
Apply a similar argument for the infimum.

The results for maximum and minimum are due to the fact that they are special cases of
supremum and infimum respectively.

6. Let S C R be the subset of the real numbers defined as S := {z € R |z € Q and 2 > 5}.

(a) Show that S is not empty (i.e., exhibit an element of S).
(b) Show that /5 is a lower bound for S.
(c) Show that inf(S) = /5. (Hint: you should use the denseness of Q in this step).

Hint: you can use the fact that every real number has a unique real cubic root, and that a® < b3
if and only if a <b.

Solution:
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(a) Consider 10. As it is a natural number, it is a rational number. Furthermore,
103 = 1000 > 5. Thus, 10 € 5.

(b) To show that /5 is a lower bound, we have to show the following:
Ve e Sz > V5.

Fix x € S. Then, by definition of S, we have 3 > 5. By the hint, this fact is
equivalent to z > /5. This concludes the proof of (a).

(c) We have showed that /5 is a lower bound. To show it is the infimum, we have to
show the following;:
Ve>0,3z e S, V5 <z<V5+e.

Fix € > 0. Then, we have ¥/5 < v/5+¢. By denseness of Q, there exists z € Q such
that ¢/5 < x < v/5 + €. By the hint, the first inequality, i.e., /5 < z, is equivalent
to 2 > 5. Since x € Q, this shows that € S. Thus, we found the sought element
of S in the interval [\275, 5 + €]. This concludes the proof.

7. For each of the following sets, check if they are bounded or unbounded. When the set is
bounded from above or below, give a few examples of lower and upper bounds, then compute
the supremum and infimum and check if maximum and minimum exist.

(a) A={zeR|2*<2}.
(b) B={z€R|z€Qand 2% <2}.

(c) C={(-1)"+ n%rl|n € N}.

Solution:

(a) This set is bounded. In fact, —2 (resp. 2) is a lower bound (resp. upper bound).
We prove the case of —2, the other is completely analogous. To show that —2 is a
lower bound, we need to show that any a € A satisfies —2 < a. If a > 0, there is
nothing to prove. If a < 0, then it suffices to observe that for any x < y < 0, then
0 < y? < x2 and this just follows from the definition of square of a real number.
Hence, a? < 2 < (—2)? implies that —2 < a. As that holds for any a € A, a < 0,
we are done.

We claim that the supremum is v/2 and infimum —v/2. As +v/2 € A, then they are
also maximum and minimum, respectively. Let us prove that v/2 is the supremum,
the other case is analogous. As for positive numbers

0<s<t = 0<s®<t? (1)

then, since (\/5)2 = 2, it follows that z < /2 for any z € A. Hence, V2 is an upper
bound for A. Let us assume that v/2 is not the smallest of the upper bounds, that
is inf A < v/2. Let I := sup A. By the density of Q in R, there exists ¢ € Q such
that

' <ec<V2.

Then ¢ < 2, hence ¢ € A and I’ < ¢ which gives a contradiction, since we assumed
that I’ is the supremum of A.
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(b) This set is bounded, as it is a subset of the set in part (a). By what showed in part
(a), v/2 is an upper bound and —+/2 is a lower bound. We claim that /2 = sup(B)
(the argument for —/2 = inf(B) is analogous). By denseness of Q, for every ¢ > 0,
we can find a rational number r such that V2 —€ < r,, < V2. Then, r, € B, as it is
positive, rational, and r2 < 4. Thus, /2 satisfies the characterization of supremum
given in class. Since sup(B) = v/2, B C Q and v2 ¢ Q, it follows that B has no
maximum. Similarly, as inf(B) = —/2, B has no minimum.

(¢) The set is bounded because —1 is a lower bound and 2 is an upper bound, sup(C) =
2, inf(C) = —1, the maximum is 2 but the minimum does not exist. To verify that
2 is the maximum and the supremum we observe that it is an upper bound and that
()" 4+ 47 =2ifn=0.
To verify that inf(C') = —1, we observe that if a > —1, then a > (—1)?m+1 + 2ml+2 =
-1+ ﬁ is satisfied for 2m+1 > ﬁ —1. So, no number a > —1 is a lower bound
for C. Thus, as —1 is a lower bound, it is the infimum.

To verify that the minimum does not exist, we observe that (—1)" + n%rl > —1 for
all n € N (treat the cases n =0, n > 1 odd, n > 1 even separately).

8. Let a be areal number. Assume that a > 0. Prove that a = 0 if and only if for any € > 0,a < e.

Solution:

(=) If a = 0 then it is smaller than any positive .

(<) Suppose that Ve >0 a < e and a € Ry. Assume a > 0. Then Je > 0 (take € = §)
s.t. a > ¢ =g > 0. This leads to a contradiction, hence our assumption that a > 0 must

be false. Since a is non-negative we must have a = 0.

9. Let L and L’ be two real numbers. Prove that the following are equivalent:

(a) L=L%
(b) for every e >0, |[L — L'| <e.

Solution:

(=) If L =L', then |L — L'| = 0. Thus, given any positive number €, |L — L'| =0 < e.
(<) Suppose that for every € > 0, |[L — L'| < e. Assume by contradiction that L # L'.
Then, by definition of absolute value, |L — L’| > 0, as the absolute value is always non-

negative and it is O only if the input is 0. Now, choose ¢ = ‘L_TL/I

assumption, we have |L — L'| < e = ‘L_27L| This is absurd, as |[L — L'| < ‘L_27L| is false,
as |[L —L'| > 0.

Then, by our

10. Let S C R be a non-empty subset. Assume that S is bounded from above and that sup(S) & S.
Show that the following fact holds: for every e > 0, SN|sup(S) — €,sup(S)[ is infinite (i.e.,
there are infinitely many elements of S in | sup(S) — €, sup(S5)]).

Hint: In this problem, you can freely use that a finite non-empty set has both maximum and
minimum.
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Solution: We argue by contradiction. Let S be a set as in the statement, and assume
that the claim does not hold. Then, there exists € > 0 such that SN|sup(S) — ¢, sup(9)] is
finite. Fix this € > 0. By the characterization of the supremum given in homework 2, we
know SN]sup(S) — €, sup(S)[ is not empty. So, SN]sup(S) — ¢, sup(S)[ is non-empty and
finite, and we can consider its maximum sg. Now, define § = %, i.e., half of the
distance between sg and sup(S). Notice that this is a positive number, as so < sup(S).
Notice that, as sg €] sup(S)—e¢, sup(S)[, we have sup(S)—s¢ < €. Thus, we have 0 < § < e.

Now, we use the characterization of the supremum given in class. Thus, there is s’ € S
such that sup(S) — § < s < sup(S). Since we know sup(S) ¢ S, we also know that
s' # sup(S), thus s’ < sup(S). Fix such s’. Then, we have

sup(S) — € < sop = sup(S) — 2§ < sup(S) — 6 < s’ < sup(9).

In particular, s’ € (sup(S) — €,sup(S)) and s’ > so. This contradicts the fact that sg is
the maximum of SN]sup(S) — ¢, sup(S)[. This provides the sought contradiction, and the
claim follows.

Alternative way to argue (only sketch): alternatively, once we produce the number
so as above, one can show that sg = max(S), and this would give a contradiction as well.

11. Let S be a non-empty and bounded subset of R. We define
S :={rxeRl—ze€S}
Show that
(a) If M is an upper bound of S, then —M is a lower bound of S’.

(b) If m is a lower bound of S, then —m is an upper bound of S’.
(c) sup(S) = —inf(S").
(d) inf(S) = —sup(S’).

—

Solution:

(a) If M is an upper bound of S, then by definition z < M for all € S. This means
that, —x > —M for all x € S, and so y > —M for all y € S’. This shows that —M
is a lower bound of S’;

(b) If m is a lower bound of S, then by definition 2z > m for all x € S. Then —z < —m
for all z € S and so y < —m for all y € S’. This shows that —m is an upper bound
of §’;

(¢) Let b = sup(S). Then [b, +oo] is the set of all the upper bounds for S. According
to part (a) the set | — oo, —b[ consists of all the lower bounds for S’. By definition,
inf(S”) is the greatest lower bound, so inf(S") = —b = —sup(S);

(d) Let b = inf(S). Then | — 0o, b] is the set of all the lower bounds for S. According
to part (b) the set [—b, oo[ consists of all the upper bounds for S’. By definition,
sup(S’) is the smallest lower bound, so sup(S’) = —b = —inf(5).

12. Let S be the subset of R defined as

S = ﬁ[o,1+%]

n=1
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Compute m :=sup S. Is m the maximum of S? (Hint: x € S <= Vn e N,z € [0,1+ 1])

Solution: First, observe that 0 <1 <1 —|—% for every n € N. Thus, 1 € S. Furthermore,
for everyn € N, 1+%L is an upper bound: indeed, S C [0, 1+%} and 1+% = max([0, 1+%]).
Now, we claim that 1 = sup(S). Assume by contradiction this is not the case. Then, as
1€ S, m > 1. Then, if we choose a natural number n > ﬁ, we have 1 + % < m. Since
1+ % is an upper bound, m is not the least upper bound of S, contradicting the fact that
m = sup(S). Thus, m = 1. Since 1 € S, we have m = max(95).

13. (Multiple choice) The subset S of R? defined as!
S:={(x,y) eR’ lx = —y,~y =z -1}

Solution:

(d) is correct. We must have © = —y and —y = x — 1 which has no solutions since the
system of equations

T=—y

—y=xz—1

implies that —1 = 0, clearly impossible. We conclude that no point in R? can satisfy both
the equations defining S and so, S =.

14. (Multiple choice) The subset S of R? defined as

Si= {(xay) € R? |\/II?2+ (y—|—3)2 = 3\/x2+y2}

Solution:

(¢) is correct. We square both terms and write and we obtain

2 2 2 2 9 9 3 9 9 3\ 2 9\ 2
P+ (y+3)7? =90’ +y?) ==z ty-—pw=Ege=atlyv-¢) =lg)

Then the solution are all the points of the circle of radius 9/8 centered at (0, 3/8).

1In this exercise (z,y) does not denote an open interval between z and y, but it instead denotes the point of
coordinates = and y in R?
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