

Analysis 1 - Exercise Set 2

Remember to check the correctness of your solutions whenever possible.

To solve the exercises you can use only the material you learned in the course.

- 1. (a) Let $p \in \mathbb{N}$ be a prime number. Prove that \sqrt{p} is not rational.
 - (b) Show that $\sqrt{7+\sqrt{17}}$ is irrational. (Hint: Use part (a) to prove that $\sqrt{17}$ is irrational. Now assume that $\sqrt{7+\sqrt{17}}$ is rational and show that it contradicts the fact that $\sqrt{17}$ is irrational.)
 - (c) Show that $\sqrt{2} + \sqrt[3]{3}$ is irrational. (Hint: Let $r = \sqrt{2} + \sqrt[3]{3}$ and assume it is rational. Compute $(r \sqrt{2})^3$ and use the result that you obtained plus the assumption on the rationality of r to find a contradiction.)

Solution:

(a) Let $\sqrt{p} = \frac{a}{h}$ such that gcd(a, b) = 1. We square both sides to get

$$p = \frac{a^2}{b^2}$$

Now we multiply both sides with b^2 to get

$$a^2 = pb^2$$

Clearly p is a factor of right hand side so p must be a factor of left hand side too. But since p is a factor of a^2 , a is an integer and p is a prime number, we deduce that p is also a factor of a. Hence we can find an integer c such that a = pc. By replacing this in the above equation we get

$$a^2 = p^2c^2 = pb^2 \Longrightarrow b^2 = pc^2$$

Using an argument similar to before we can deduct that p is also a factor of b. This is a contradiction since we assumed that gcd(a, b) = 1 but p divides both a and b.

(b) Let $r = \sqrt{7 + \sqrt{17}}$. Since 17 is a prime number, $\sqrt{17}$ is irrational by part (a). Now we can rewrite r as

$$r^2 - 7 = \sqrt{17}$$

If r is rational then so is $r^2 - 7$ and this is a contradiction since $\sqrt{17}$ is irrational.

(c) Let $r = \sqrt{2} + \sqrt[3]{3}$. We have

$$(r - \sqrt{2})^3 = 3$$

and then

$$0 = r^3 - 3r^2\sqrt{2} + 6r - 2\sqrt{2} - 3 = r^3 + 6r - 3 - \sqrt{2}(3r^2 + 2).$$

So

$$\sqrt{2} = \frac{r^3 + 6r - 3}{3r^2 + 2}.$$

If r is a rational number then the right hand side becomes rational. This contradicts the fact that $\sqrt{2}$ is irrational.

2. Let S be a subset of \mathbb{R} . Let a be a lower bound (respectively an upper bound) for S. Show that any real number b such that b < a (respectively b > a) then b is also a lower bound (resp. an upper bound) for S.

Solution:

Lower bound case: Let a be a lower bound for $S \Leftrightarrow \forall x \in S \quad b < a \leq x \Rightarrow \forall x \in S \quad b < x \Rightarrow b$ is a lower bound for S.

Upper bound case: Let a be an upper bound for $S \Leftrightarrow \forall x \in S \quad b > a \ge x \Rightarrow \forall x \in S \quad b > x \Rightarrow b$ is an upper bound for S.

- 3. Let A be a bounded interval in \mathbb{R} , i.e., A is a subset of \mathbb{R} of either one of the following forms: [a,b], or [a,b[, or [a,b[, or [a,b[, or [a,b], with $a,b\in\mathbb{R}$ and a< b. State if the following statements are true or false. If you true, explain why. If false, find an example of an interval that contradicts that statement.
 - (a) $\sup(A) \in A$ and $\inf(A) \in A$.
 - (b) If $\sup(A) \in A$ and $\inf(A) \in A$ then A is closed.
 - (c) If A is closed then $\sup(A) \in A$ and $\inf(A) \in A$.
 - (d) If $\sup(A) \notin A$ and $\inf(A) \notin A$ then A is open.
 - (e) If A is open then $\sup(A) \notin A$ and $\inf(A) \notin A$.

Solution:

- (a) False. For example, take the interval A = [1, 2].
- (b) True. Verification: Assume that it is false. Then A is not closed, for example $A = [a, b[= \{x \in \mathbb{R} : a \le x < b\}]$. We observe that b is an upper bound and that if c < b is another upper bound, then c > a and we know from the lecture that there exists a real number d such that c < d < b. Then $d \in A$, so c cannot be an upper bound. This shows that $\sup(A) = b$. But $b \notin A$. Hence, we reached a contradiction. A similar argument for $\inf(A) = a$ works if A = [a, b[or A = [a, b[.
- (c) True. If A is closed there exist real numbers a < b such that A = [a, b]. Then, $a = \min(A) = \sup(A)$ and $b = \max(A) = \sup(A)$.
- (d) True. Verification: Assume that it is false. Then A is not open, for example $A = [a, b[= \{x \in \mathbb{R} : a \leq x < b\}]$. An argument as above shows that $\inf(A) = a$. But $a \in A$. Hence, we have a contradiction. A similar argument for $\sup(A) = b$ works if A = [a, b] or A = [a, b].
- (e) True. If A is open there exist real numbers a < b such that A =]a, b[. An argument as in the previous case shows that $\sup(A) = b$ and $\inf(A) = a$. Hence, they do not belong to A.
- 4. Let A be a bounded interval in \mathbb{R} , i.e., A is a subset of \mathbb{R} of either one of the following forms: [a,b], or [a,b[, and a<b. Show that inf A=a, sup A=b. When is the infimum (resp. maximum) of A a minimum (resp. a maximum)?

Solution: Let us show that $\inf A = a$. We first show that a is a lower bound for A. This follows since $\forall d \in A$,

$$\begin{cases} d \ge a, & \text{if } A = [a, b] \text{ or } A = [a, b[\\ d > a, & \text{if } A =]a, b] \text{ or } A =]a, b[. \end{cases}$$

We need to show that a is the largest lower bound for A, that is, we need to show that if c is a real number such that c > a, then c is not a lower bound for A. To show this, it suffices to show that there exists an element l of A such that l < c. Since c > a, then $a < a + \frac{c-a}{2} < c$. If $a + \frac{c-a}{2} \in A$, it suffices to take $l := a + \frac{c-a}{2}$. If $a + \frac{c-a}{2} \notin A$, then c > b, and it suffices to take l := b.

The proof that $\sup A = b$ is similar. We first show that b is an upper bound for A. This follows since $\forall e \in A$,

$$\begin{cases} e \le b, & \text{if } A = [a, b] \text{ or } A =]a, b] \\ e < b, & \text{if } A =]a, b[\text{ or } A = [a, b[.$$

We need to show that b is the smaller upper bound for A, that is, we need to show that if f is a real number such that f < b, then f is not a lower bound for A. To show this, it suffices to show that there exists an element m of A such that m > f. Since f < b, then $f < b + \frac{f-b}{2} < b$. If $b + \frac{f-b}{2} \in A$, it suffices to take $m := b + \frac{f-b}{2}$. If $b + \frac{f-b}{2} \notin A$, then also f < a, and it suffices to take m := a.

In view of the above, then A has a minimum (resp. maximum) if and only if $a \in A$ (resp. $b \in A$). Hence A has has a minimum (resp. maximum) if and only if A = [a, b] or A = [a, b] (resp. A = [a, b] or A = [a, b]).

5. Let S be a subset of \mathbb{R} . Show that if $\sup(S)$, $\inf(S)$, $\max(S)$, $\min(S)$ exist, then they are unique.

Solution: Suppose that the supremum for a non-empty set $S \subset \mathbb{R}$ is not unique. Then there are at least two 'numbers' a < b (we allow $b = +\infty$) s.t. they are the supremum of S, so they are both a smallest upper bound for S. But b can obviously not be the supremum since it cannot be the smallest upper bound, since a is an upper bound smaller than b. Hence, our assumption that there are more than one suprema of S must be false. Apply a similar argument for the infimum.

The results for maximum and minimum are due to the fact that they are special cases of supremum and infimum respectively.

- 6. Let $S \subseteq \mathbb{R}$ be the subset of the real numbers defined as $S := \{x \in \mathbb{R} \mid x \in \mathbb{Q} \text{ and } x^3 \geq 5\}$.
 - (a) Show that S is not empty (i.e., exhibit an element of S).
 - (b) Show that $\sqrt[3]{5}$ is a lower bound for S.
 - (c) Show that $\inf(S) = \sqrt[3]{5}$. (Hint: you should use the denseness of \mathbb{Q} in this step).

Hint: you can use the fact that every real number has a unique real cubic root, and that $a^3 \leq b^3$ if and only if $a \leq b$.

Solution:

- (a) Consider 10. As it is a natural number, it is a rational number. Furthermore, $10^3 = 1000 > 5$. Thus, $10 \in S$.
- (b) To show that $\sqrt[3]{5}$ is a lower bound, we have to show the following:

$$\forall x \in S, x \ge \sqrt[3]{5}.$$

Fix $x \in S$. Then, by definition of S, we have $x^3 \geq 5$. By the hint, this fact is equivalent to $x \geq \sqrt[3]{5}$. This concludes the proof of (a).

(c) We have showed that $\sqrt[3]{5}$ is a lower bound. To show it is the infimum, we have to show the following:

$$\forall \epsilon > 0, \exists x \in S, \sqrt[3]{5} \le x \le \sqrt[3]{5} + \epsilon.$$

Fix $\epsilon > 0$. Then, we have $\sqrt[3]{5} < \sqrt[3]{5} + \epsilon$. By denseness of \mathbb{Q} , there exists $x \in \mathbb{Q}$ such that $\sqrt[3]{5} < x < \sqrt[3]{5} + \epsilon$. By the hint, the first inequality, i.e., $\sqrt[3]{5} < x$, is equivalent to $x^3 > 5$. Since $x \in \mathbb{Q}$, this shows that $x \in S$. Thus, we found the sought element of S in the interval $[\sqrt[3]{5}, \sqrt[3]{5} + \epsilon]$. This concludes the proof.

- 7. For each of the following sets, check if they are bounded or unbounded. When the set is bounded from above or below, give a few examples of lower and upper bounds, then compute the supremum and infimum and check if maximum and minimum exist.
 - (a) $A = \{x \in \mathbb{R} \mid x^2 \le 2\}.$
 - (b) $B = \{x \in \mathbb{R} \mid x \in \mathbb{Q} \text{ and } x^2 \le 2\}.$
 - (c) $C = \{(-1)^n + \frac{1}{n+1} | n \in \mathbb{N} \}.$

Solution:

(a) This set is bounded. In fact, -2 (resp. 2) is a lower bound (resp. upper bound). We prove the case of -2, the other is completely analogous. To show that -2 is a lower bound, we need to show that any $a \in A$ satisfies $-2 \le a$. If $a \ge 0$, there is nothing to prove. If a < 0, then it suffices to observe that for any x < y < 0, then $0 < y^2 < x^2$ and this just follows from the definition of square of a real number. Hence, $a^2 \le 2 < (-2)^2$ implies that -2 < a. As that holds for any $a \in A$, a < 0, we are done

We claim that the supremum is $\sqrt{2}$ and infimum $-\sqrt{2}$. As $\pm\sqrt{2} \in A$, then they are also maximum and minimum, respectively. Let us prove that $\sqrt{2}$ is the supremum, the other case is analogous. As for positive numbers

$$0 < s < t \implies 0 < s^2 < t^2, \tag{1}$$

then, since $(\sqrt{2})^2=2$, it follows that $z\leq \sqrt{2}$ for any $z\in A$. Hence, $\sqrt{2}$ is an upper bound for A. Let us assume that $\sqrt{2}$ is not the smallest of the upper bounds, that is $\inf A<\sqrt{2}$. Let $l':=\sup A$. By the density of $\mathbb Q$ in $\mathbb R$, there exists $c\in \mathbb Q$ such that

$$l' < c < \sqrt{2}$$
.

Then $c^2 < 2$, hence $c \in A$ and l' < c which gives a contradiction, since we assumed that l' is the supremum of A.

- (b) This set is bounded, as it is a subset of the set in part (a). By what showed in part (a), $\sqrt{2}$ is an upper bound and $-\sqrt{2}$ is a lower bound. We claim that $\sqrt{2} = \sup(B)$ (the argument for $-\sqrt{2} = \inf(B)$ is analogous). By denseness of \mathbb{Q} , for every $\epsilon > 0$, we can find a rational number r such that $\sqrt{2} \epsilon < r_n < \sqrt{2}$. Then, $r_n \in B$, as it is positive, rational, and $r_n^2 < 4$. Thus, $\sqrt{2}$ satisfies the characterization of supremum given in class. Since $\sup(B) = \sqrt{2}$, $B \subset \mathbb{Q}$ and $\sqrt{2} \notin \mathbb{Q}$, it follows that B has no maximum. Similarly, as $\inf(B) = -\sqrt{2}$, B has no minimum.
- (c) The set is bounded because -1 is a lower bound and 2 is an upper bound, $\sup(C) = 2$, $\inf(C) = -1$, the maximum is 2 but the minimum does not exist. To verify that 2 is the maximum and the supremum we observe that it is an upper bound and that $(-1)^n + \frac{1}{n+1} = 2$ if n = 0.

To verify that $\inf(C)=-1$, we observe that if a>-1, then $a>(-1)^{2m+1}+\frac{1}{2m+2}=-1+\frac{1}{2m+2}$ is satisfied for $2m+1>\frac{1}{a+1}-1$. So, no number a>-1 is a lower bound for C. Thus, as -1 is a lower bound, it is the infimum.

To verify that the minimum does not exist, we observe that $(-1)^n + \frac{1}{n+1} > -1$ for all $n \in \mathbb{N}$ (treat the cases n = 0, $n \ge 1$ odd, $n \ge 1$ even separately).

8. Let a be a real number. Assume that $a \ge 0$. Prove that a = 0 if and only if for any $\varepsilon > 0$, $a \le \epsilon$.

Solution:

- (\Rightarrow) If a=0 then it is smaller than any positive ε .
- (\Leftarrow) Suppose that $\forall \varepsilon > 0$ $a \le \varepsilon$ and $a \in \mathbb{R}_+$. Assume a > 0. Then $\exists \varepsilon > 0$ (take $\varepsilon = \frac{a}{2}$) s.t. $a > \varepsilon = \frac{a}{2} > 0$. This leads to a contradiction, hence our assumption that a > 0 must be false. Since a is non-negative we must have a = 0.
- 9. Let L and L' be two real numbers. Prove that the following are equivalent:
 - (a) L = L';
 - (b) for every $\epsilon > 0$, $|L L'| \le \epsilon$.

Solution:

- (\Rightarrow) If L=L', then |L-L'|=0. Thus, given any positive number $\epsilon, |L-L'|=0 \le \epsilon$.
- (\Leftarrow) Suppose that for every $\epsilon > 0$, $|L L'| \le \epsilon$. Assume by contradiction that $L \ne L'$. Then, by definition of absolute value, |L L'| > 0, as the absolute value is always nonnegative and it is 0 only if the input is 0. Now, choose $\epsilon = \frac{|L L'|}{2}$. Then, by our assumption, we have $|L L'| \le \epsilon = \frac{|L L'|}{2}$. This is absurd, as $|L L'| \le \frac{|L L'|}{2}$ is false, as |L L'| > 0.
- 10. Let $S \subseteq \mathbb{R}$ be a non-empty subset. Assume that S is bounded from above and that $\sup(S) \not\in S$. Show that the following fact holds: for every $\epsilon > 0$, $S \cap]\sup(S) \epsilon, \sup(S)[$ is infinite (i.e., there are infinitely many elements of S in $]\sup(S) \epsilon, \sup(S)[)$.

Hint: In this problem, you can freely use that a finite non-empty set has both maximum and minimum.

Solution: We argue by contradiction. Let S be a set as in the statement, and assume that the claim does not hold. Then, there exists $\epsilon > 0$ such that $S \cap] \sup(S) - \epsilon, \sup(S)[$ is finite. Fix this $\epsilon > 0$. By the characterization of the supremum given in homework 2, we know $S \cap] \sup(S) - \epsilon, \sup(S)[$ is not empty. So, $S \cap] \sup(S) - \epsilon, \sup(S)[$ is non-empty and finite, and we can consider its maximum s_0 . Now, define $\delta = \frac{\sup(S) - s_0}{2}$, i.e., half of the distance between s_0 and $\sup(S)$. Notice that this is a positive number, as $s_0 < \sup(S)$. Notice that, as $s_0 \in] \sup(S) - \epsilon, \sup(S)[$, we have $\sup(S) - s_0 < \epsilon$. Thus, we have $0 < \delta < \epsilon$.

Now, we use the characterization of the supremum given in class. Thus, there is $s' \in S$ such that $\sup(S) - \delta \leq s' \leq \sup(S)$. Since we know $\sup(S) \notin S$, we also know that $s' \neq \sup(S)$, thus $s' < \sup(S)$. Fix such s'. Then, we have

$$\sup(S) - \epsilon < s_0 = \sup(S) - 2\delta < \sup(S) - \delta \le s' < \sup(S).$$

In particular, $s' \in (\sup(S) - \epsilon, \sup(S))$ and $s' > s_0$. This contradicts the fact that s_0 is the maximum of $S \cap]\sup(S) - \epsilon, \sup(S)[$. This provides the sought contradiction, and the claim follows.

Alternative way to argue (only sketch): alternatively, once we produce the number s_0 as above, one can show that $s_0 = \max(S)$, and this would give a contradiction as well.

11. Let S be a non-empty and bounded subset of \mathbb{R} . We define

$$S' := \{ x \in \mathbb{R} | -x \in S \}.$$

Show that

- (a) If M is an upper bound of S, then -M is a lower bound of S'.
- (b) If m is a lower bound of S, then -m is an upper bound of S'.
- (c) $\sup(S) = -\inf(S')$.
- (d) $\inf(S) = -\sup(S')$.

Solution:

- (a) If M is an upper bound of S, then by definition $x \leq M$ for all $x \in S$. This means that, $-x \geq -M$ for all $x \in S$, and so $y \geq -M$ for all $y \in S'$. This shows that -M is a lower bound of S';
- (b) If m is a lower bound of S, then by definition $x \ge m$ for all $x \in S$. Then $-x \le -m$ for all $x \in S$ and so $y \le -m$ for all $y \in S'$. This shows that -m is an upper bound of S';
- (c) Let $b = \sup(S)$. Then $[b, +\infty[$ is the set of all the upper bounds for S. According to part (a) the set $]-\infty, -b[$ consists of all the lower bounds for S'. By definition, $\inf(S')$ is the greatest lower bound, so $\inf(S') = -b = -\sup(S)$;
- (d) Let $b = \inf(S)$. Then $]-\infty, b]$ is the set of all the lower bounds for S. According to part (b) the set $[-b, \infty[$ consists of all the upper bounds for S'. By definition, $\sup(S')$ is the smallest lower bound, so $\sup(S') = -b = -\inf(S)$.
- 12. Let S be the subset of \mathbb{R} defined as

$$S := \bigcap_{n=1}^{\infty} \left[0, 1 + \frac{1}{n}\right]$$

Compute $m := \sup S$. Is m the maximum of S? (Hint: $x \in S \iff \forall n \in \mathbb{N}, x \in [0, 1 + \frac{1}{n}]$)

Solution: First, observe that $0 \le 1 \le 1 + \frac{1}{n}$ for every $n \in \mathbb{N}$. Thus, $1 \in S$. Furthermore, for every $n \in \mathbb{N}$, $1 + \frac{1}{n}$ is an upper bound: indeed, $S \subseteq [0, 1 + \frac{1}{n}]$ and $1 + \frac{1}{n} = \max([0, 1 + \frac{1}{n}])$. Now, we claim that $1 = \sup(S)$. Assume by contradiction this is not the case. Then, as $1 \in S$, m > 1. Then, if we choose a natural number $n > \frac{1}{m-1}$, we have $1 + \frac{1}{n} < m$. Since $1 + \frac{1}{n}$ is an upper bound, m is not the least upper bound of S, contradicting the fact that $m = \sup(S)$. Thus, m = 1. Since $1 \in S$, we have $m = \max(S)$.

13. (Multiple choice) The subset S of \mathbb{R}^2 defined as

$$S := \{(x, y) \in \mathbb{R}^2 \mid x = -y, -y = x - 1\}$$

is:

- (a) A point.
- (b) A line.
- (c) A circle.
- (d) Empty.

Solution:

(d) is correct. We must have x=-y and -y=x-1 which has no solutions since the system of equations

$$\begin{cases} x = -y \\ -y = x - 1 \end{cases}$$

implies that -1 = 0, clearly impossible. We conclude that no point in \mathbb{R}^2 can satisfy both the equations defining S and so, S =.

14. (Multiple choice) The subset S of \mathbb{R}^2 defined as

$$S := \{(x,y) \in \mathbb{R}^2 \mid \sqrt{x^2 + (y+3)^2} = 3\sqrt{x^2 + y^2} \}$$

is:

- (a) A point.
- (b) A line.
- (c) A circle.
- (d) Empty.

Solution:

(c) is correct. We square both terms and write and we obtain

$$x^{2} + (y+3)^{2} = 9(x^{2} + y^{2}) \Longleftrightarrow x^{2} + y^{2} - \frac{3}{4}y = \frac{9}{8} \Longleftrightarrow x^{2} + \left(y - \frac{3}{8}\right)^{2} = \left(\frac{9}{8}\right)^{2}.$$

Then the solution are all the points of the circle of radius 9/8 centered at (0, 3/8).

¹In this exercise (x, y) does not denote an open interval between x and y, but it instead denotes the point of coordinates x and y in \mathbb{R}^2