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Fall Semester 2021–2022

Analysis 1 - Exercise Set 1

1. Real Numbers.

(a) Explain the difference between a rational and an irrational number.

(b) Classify the following numbers as rational, irrational, natural, integer. (A number may
belong to more than one set).

(i) −2

(ii) 4 1
3

(iii)
√

10

(iv) 0

(v) π

(c) Show that
√

7 is an irrational number. (Hint: assume that you can write
√

7 = a
b where

a and b are integers where their greatest common divisor is gcd(a, b) = 1. Then try to
find a contradiction.)

Solution:

(a) A rational number can be expressed as the ratio of two integers. An irrational
number is any real number that is not rational.

(b) (i) rational, integer

(ii) rational

(iii) irrational

(iv) rational, integer, natural

(v) irrational

(c) Let
√

7 = a
b such that gcd(a, b) = 1. We square both sides to get

7 =
a2

b2

Now we multiply both sides with b2 to get

a2 = 7b2

Clearly 7 is a factor of right hand side so 7 must be a factor of left hand side too.
But since 7 is a factor of a2, a is an integer and 7 is a prime number, we deduce
that 7 is also a factor of a. Hence we can find an integer c such that a = 7c. By
replacing this in the above equation we get

a2 = 72c2 = 7b2 =⇒ b2 = 7c2

Using an argument similar to before we can deduct that 7 is also a factor of b. This
is a contradiction since we assumed that gcd(a, b) = 1 but 7 divides both a and b.



2. Trigonometry.

Show that the following identities hold:

(a) sin6 x+ cos6 x = 1− 3 sin2 x cos2 x

(b) sinx+ sin y = 2 sin(x+y
2 ) cos(x−y

2 )

(c) sinx− sin y = 2 cos(x+y
2 ) sin(x−y

2 )

(d) cosx+ cos y = 2 cos(x+y
2 ) cos(x−y

2 )

(e) cosx− cos y = −2 sin(x+y
2 ) sin(x−y

2 )

(Hints: For (a) use the identities: (a3+b3) = (a+b)(a2−ab+b2), (a+b)2 = a2+2ab+b2,
sin2 x+ cos2 x = 1. For (b)-(e) use the identities

sin(α± β) = sinα cosβ ± cosα sinβ

cos(α± β) = cosα cosβ ∓ sinα sinβ

and compute sin(α+ β) + sin(α− β), sin(α+ β)− sin(α− β) etc. then try to find x and
y in terms of α and β)

Solution:

(a)
sin6 x+ cos6 x = (sin2 x+ cos2 x)︸ ︷︷ ︸

=1

(sin4 x− sin2 x cos2 x+ cos4 x)

= (sin4 x− sin2 x cos2 x+ cos4 x)

= (sin2 x+ cos2 x)︸ ︷︷ ︸
=1

2 − 2 sin2 x cos2 x− sin2 x cos2 x

= 1− 3 sin2 x cos2 x

(b) Using the hint we get

sin(α+ β) + sin(α− β) = 2 sinα cosβ

So it is enough to let x = α + β and y = α − β. Solving the system of equations
yields α = x+y

2 and β = x−y
2 .

(c) We have
sin(α+ β)− sin(α− β) = 2 cosα sinβ

So we take x = α+β and y = α−β. Solving the system of equations yields α = x+y
2

and β = x−y
2 .

(d) We have
cos(α+ β) + cos(α− β) = 2 cosα cosβ

So we take x = α+β and y = α−β. Solving the system of equations yields α = x+y
2

and β = x−y
2 .

(e) We have
cos(α+ β)− cos(α− β) = −2 sinα sinβ

So we take x = α+β and y = α−β. Solving the system of equations yields α = x+y
2

and β = x−y
2 .
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3. Trigonomentry.

Simplify the following trigonometric expressions to obtain algebraic expressions (i.e., only
involving sums, ratios, roots, etc.).
Example: if −1 ≤ x ≤ 1, we have cos(arcsinx) =

√
1− x2.

(a) sin(arcsinx), where −1 ≤ x ≤ 1

(b) sin(arccosx), where −1 ≤ x ≤ 1

(c) tan(arccosx), where −1 ≤ x ≤ 1

Solution: In each case, the restriction on the values of x guarantees that x is in the
domain of the corresponding inverse trigonometric function.

(a)
sin(arcsinx) = (sin ◦ arcsin)(x) = id(x) = x

where id is the identity mapping, i.e., id(x) = x for all x.

(b) the function arccos takes values in [0, π], and in this interval we have the relation

sinx =
√

1− cos2 x =
√

1− x2

(side question: what does fail outside this interval?), so we have

sin(arccosx) =
√

1− cos2(arccosx) =
√

1− x2

(c) Arguing as above, we get

tan(arccosx) =
sin(arccosx)

cos(arccosx)
=

√
1− x2
x

4. Arithmetic manipulations.

Prove the following identities.

(a)

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
, n ≥ 1.

(Hint: try to add the elements of the two finite sequences (1, 2, . . . , n) and (n, n− 1, n−
2, . . . , 1) term by term)

(b) Give an alternative proof, to the one given in the first lecture, for the equality

a+ a2 + a3 + · · ·+ an = a · 1− an

1− a
, a 6= 1, n > 1.

(Hint: use the identity

(bn − an) = (b− a)(an−1 + an−2b+ an−3b2 + · · ·+ abn−2 + bn−1),

and replace b with 1 )

(c)∗ For any n ∈ N,
n∑

i=1

i2 =
n(n+ 1)(2n+ 1)

6
.

(Hint: start by computing k3 − (k − 1)3 for a natural number k)
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Solution:

(a) We observe that if we add elements of the two sequences (1, 2, . . . , n) and (n, n −
1, n − 2, . . . , 1) we get the sequence (n + 1, n + 1, n + 1, . . . , n + 1), whose sum is
n(n+ 1). As we counted each term of the original sequence twice, we conclude that,

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2

(b) Using the identity and replacing b with 1 we obtain

(1− an) = (1− a)(an−1 + an−2 + · · ·+ a+ 1)

We divide both sides by (1− a), which is not 0 as a 6= 1, to get

(1− an)

(1− a)
= an−1 + an−2 + · · ·+ a+ 1

Finally we multiply both sides by a to get

a+ a2 + a3 + · · ·+ an = a · 1− an

1− a

(c) We compute
k3 − (k − 1)3 = 3k2 − 3k + 1.

Hence,

k2 =
k3 − (k − 1)3

3
+ k − 1

3
.

Thus,

n∑
i=1

i2 =

n∑
i=1

(
i3 − (i− 1)3

3
+ i− 1

3

)
=

n∑
i=1

i3 − (i− 1)3

3
+

n∑
i=1

i−
n∑

i=1

1

3
. (1)

Now, the first sum is a telescopic sum (i.e., there are cancellations)

n∑
i=1

i3 − (i− 1)3

3
=
n3

3
− (n− 1)3

3
+

(n− 1)3

3
− (n− 2)3

3
+

(n− 2)3

3
− . . . (2)

− 33

3
+

33

3
− 23

3
+

23

3
− 13

3
+

13

3
− 03 =

n3

3
.

The second sum has been computed in part (a), that is

n∑
i=1

i =
(n+ 1)n

2
, (3)

while the last sum is the sum of n copies of 1
3

n∑
i=1

1

3
=
n

3
. (4)

Putting equations (1)-(4) together, we get that

n∑
i=1

i2 =
2n3 + 3n2 + 3n− 2n

6
=
n(2n2 + 3n+ 1)

6
=
n(2n+ 1)(n+ 1)

6
.
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Alternative proof, using induction (check the book at page 469 if you do not know
what induction is; you can also read the text in italics below).
We prove this by induction. That the conclusions holds for n = 1 is a simple direct
computation by substituting n with 1 in the formula.
Now, suppose that the formula that we are requested to prove holds for some natural
number n = k. That is,

k∑
i=1

i2 =
k(k + 1)(2k + 1)

6

Then,

k+1∑
i=1

i2 =

(
k∑

i=1

i2

)
+ (k + 1)2 =

k(k + 1)(2k + 1)

6
+ (k + 1)2 =

(k + 1)(k + 2)(2(k + 1) + 1)

6

where the second equality follows from our inductive hypothesis and the third equal-
ity can be verified by expanding each term.

Hence, the formula holds by induction.

Proof by induction: We have shown that the formula holds whenever n = 1. We
later show that if the formula holds for some natural number n = k, then the for-
mula also holds whenever n = k+1. Consequently, since the formula holds whenever
n = 1, it must also holds for n = 1 + 1 = 2. But this means that it must also hold
for n = 2 + 1 = 3, and therefore n = 3 + 1 = 4, n = 4 + 1 = 5, n = 5 + 1 = 6, · · ·
and so on.

5. Equations.

Solve the following equations:

(a) 2x
x+1 = 2x−1

x ;

(b) x4 − 3x2 + 2 = 0;

(c) 3|x− 4| = 10.

Solution:

(a) By the denominators, we have the conditions x 6= −1 and x 6= 0. Now, we multiply
both sides by x(x+ 1), and we get

2x2 = (2x− 1)(x+ 1)

2x2 = 2x2 + 2x− x− 1

0 = −x− 1

x = 1,

which is an acceptable solution.

(b) First, we regard the polynomial as a polynomial in t = x2. Then, we realized that we
can factor t2−3t+2 = (t−1)(t−2). So, the equation becomes (x2−1)(x2−2) = 0.
Since we have a product and we want it to be 0, it will be 0 when at least one of the
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factors is 0. So, first we study x2 − 1 = 0, which has solutions x = ±1. Then, we
study x2 − 2 = 0, which has solutions x = ±

√
2. Thus, the equation has solutions

1,−1,
√

2,−
√

2.

(c) We study the equation by cases. If x−4 ≥ 0, we have |x−4| = x−4. Thus, subject
to the condition x ≥ 4, the equation becomes 3(x− 4) = 10. So, it is

3(x− 4) = 10

3x− 12 = 10

3x = 22

x =
22

3
.

Since 22
3 ≥

12
3 = 4, this solution is acceptable.

Now, we analyze the case x < 4, which allows to simplify the equation as −3(x−4) =
10. Thus, we have

−3x+ 12 = 10

−3x = −2

x =
2

3
.

Since 2
3 < 4, also this solution is acceptable.

6. Inequalities.

Determine the solutions to the following inequalities.

(a) x2 < 2x+ 8;

(b) x(x− 1)(x− 2) > 0;

(c) 2x−3
x+1 ≤ 1;

(d) |x2 − 1| ≤ 1.

Solution:

(a) We will bring all the summands to one side and try to factor the polynomial we get.
So, the inequality is equivalent to x2 − 2x − 8 < 0. Now, we factor x2 − 2x − 8 =
(x+2)(x−4), and the roots are −2 and 4. If we think of the graph of y = x2−2x−8,
it is a parabola, and x = −2 and x = 4 determine its x-intercepts. So, since we want
the portion of the parabola whose y-coordinate is negative (i.e., y = x2−2x−8 < 0)
and the parabola is concave up, the solution is −2 < x < 4.

(b) We study the sign of each factor, and then we use the sign rule to determine the
sign of their product. The factor x is positive if x > 0 and negative if x < 0. The
factor x − 1 is positive if x > 1 and negative if x < −1. Lastly, the factor x − 2
is positive if x > 2 and negative if x < −2. Since we want a strict inequality, we
exclude the values x = 0, 1, 2 and only consider open intervals. On (−∞, 0) all three
factors are negative, so their product is negative, as − · − · − = −. On (0, 1), the
factor x is positive and the other two are negative, so + · − · − = +, and we have a
solution. On (1, 2) only the factor x− 2 is negative and the other two are positive,
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so we have + · + · − = −. Lastly, on (2,+∞) all three are positive and we get a
solution, as + ·+ ·+ = +. So, the solution set is (0, 1) ∪ (2,+∞).

(c) In order to solve this equation, we want to clear denominators. Yet, the sign of
x+ 1 will determine whether we have to flip the inequality or not. So, the first case
is when x + 1 > 0, that is, x > −1. In this case, when we clear the denominator,
we multiply by a positive number, and the direction of the inequality is preserved.
So, if x > −1, we obtain 2x − 3 ≤ x + 1. Now, we solve this linear inequality, and
we get x ≤ 4. So, since we have the constraint x > −1, we obtain the solutions
−1 < x ≤ 4.

Now, we consider the case x < −1, which corresponds to having a negative de-
nominator. So, when we clear the denominator, we multiply by a negative number,
and the inequality becomes 2x − 3 ≥ x + 1, which has solution x ≥ 4. Since
(−∞,−1) ∩ [4,+∞) = ∅, this case does not provide any valid solution.

So, the overall solution set is −1 < x ≤ 4.

(d) In this case, we use the following fact: if b ≥ 0, the inequality |a| ≤ b is equivalent
to −b ≤ a ≤ b. So, in our case, we get −1 ≤ x2 − 1 ≤ 1. Adding 1 all the way,
we get 0 ≤ x2 ≤ 2. Since x2 ≥ 0 is always true, we are left with x2 ≤ 2. If we
interpret is as the graph of a parabola that is concave up, we are looking at the
portion that is below the line y = 2. So, we can solve x2 = 2, and the solution will
be the interval between the two roots of this equation. Thus, the overall solution is
−
√

2 ≤ x ≤
√

2.

7. Functions.

Let

f(x) =
1

1− 2
1+ 1

1−x

(a) Find x, such that f(x) = 3.

(b) Find the domain of f .

Solution:

(a) there are many easy alternative ways to solve this equation; one is the following

1

1− 2
1+ 1

1−x

= 3⇐⇒ 1− 2

1 + 1
1−x

=
1

3

⇐⇒ 1

1 + 1
1−x

=
1

3

⇐⇒ 1 +
1

1− x
= 3

⇐⇒ 1

1− x
= 2

⇐⇒ x =
1

2

(b) The domain is the entire R except for the values that make the denominator of the
fractions 1

1−x , 2
1+ 1

1−x

and 1
1− 2

1+ 1
1−x

zero. These values are, x = 1, x = 2 and x = 0.

So Df = R\{0, 1, 2}.
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8. Functions.

Do there exist functions f and g defined on R such that

f(x) + g(y) = xy

for all real numbers x and y? (Hint: Try to evaluate for (x, y) = (0, 0), (x, y) = (1, 0), (x, y) =
(0, 1), (x, y) = (1, 1))

Solution: The answer is no. To explain look at

f(0) + g(0) = 0 (1)

f(1) + g(0) = 0 (2)

f(0) + g(1) = 0 (3)

f(1) + g(1) = 1 (4)

If we add equations (2) and (3) we get

f(1) + g(1) + f(0) + g(0) = 0

But from equation (4) we know that f(1) + g(1) = 1 and f(0) + g(0) = 0 from equation
(1). So the left hand side adds up to 1 while the right hand side is zero. This is the
contradiction with the hypothesis that we can have the form f(x) + g(y) = xy.

9. Functions.

Recall that a function F : X → Y is called injective if for every pair of elements a and b in
X, F (a) = F (b) implies that a = b; in other words, it is injective if distinct elements have
distinct images.
Consider now three functions f, g, h : R → R. For each of the following statements, say
whether that is true or false. If you think it is true, then provide a proof of that, or, else, if
false, provide a counterexample.

(a) f ◦ (g + h) = f ◦ g + f ◦ h;

(b) (f + g) ◦ h = (f ◦ h) + (g ◦ h);

(c) f ◦ g = g ◦ f if and only if f = g;

(d) if f ◦ f is injective then f is injective;

(e) if f ◦ g is injective then g is injective;

(f) if f ◦ g is injective then f is injective.

Solution:

(a) False. Take f(x) = x2, g(x) = x and h(x) = x then f ◦ (g + h) = 4x2 and
f ◦ g + f ◦ h = 2x2.

(b) True.

(c) False. Take f(x) = x and g to be the function identically 0, i.e., g(x) = 0 for all x.
Then f ◦ g = g ◦ f = 0
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(d) True. We want to show that f is injective. Assume we have x1 and x2 such that
f(x1) = f(x2), we have to show that x1 = x2. We have

f(x1) = f(x2) =⇒ f(f(x1)) = f(f(x2)) =⇒ (f ◦ f)(x1) = (f ◦ f)(x2) =⇒ x1 = x2

The last implication is because f ◦ f is injective.

(e) True. Similar to the previous exercise.

(f) False. The following is a counterexample with easy sets, rather than R. Let g be
the inclusion of {a} in {a, b}, and f a map from {a, b} to a set with a single element
{∗}, so f(a) = f(b) = ∗, then the composition is injective but f is not injective. To
have a counterexample on R, take as g the exponential and f(x) = x2.

10. Functions.

Let f : N→ N and g : N→ N be defined by f(n) = n2 and g(n) = n+ 1, respectively.

(a) Compute f ◦ g;

(b) compute g ◦ f ;

(c) compute gm for every m ∈ N.

Solution:

(a) We have f ◦ g(n) = f(g(n)) = f(n+ 1) = (n+ 1)2 = n2 + 2n+ 1 for every n ∈ N.

(b) We have g ◦ f(n) = g(f(n)) = g(n2) = n2 + 1 for every n ∈ N.

(c) The function g adds 1 to the input. If we repeat it m times, gm will add 1 m times
to the original input. That is, gm(n) = n+m.

11. ∗ Functions.

Consider the following set of n+ 1 points in R2:

S := {(xi, yi)|i = 0, 1, · · · , n},

where xi 6= xj for i 6= j.
Find a polynomial p of degree at most n such that p(xi) = yi for any i = 0, 1, · · · , n.
You may use the following fact: If p is a sum of polynomials of degree n, then p is a polynomial
of degree at most n.
(Hint: Try to first find degree n polynomials ϕi for i = 0, 1, · · · , n s.t. ϕi(xj) = δij, where δij
is defined as follows:

δij =

{
0 for i 6= j,

1 for i = j.

Using the polynomials ϕi, can you construct p?)
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Solution: We start with the hint. The aim is to find a polynomial ϕi of degree n with
roots at x0, x1, · · · , xi−1, xi+1, · · · , xn and ϕi(xi) = 1. We know the n roots of ϕi. We
can therefore conclude that ϕi must be of the following form

ϕi(x) = C(x− x0)(x− x1) · · · (x− xi−1)(x− xi+1) · · · (x− xn) = C

n∏
j=0,j 6=i

(x− xj)

for some non-zero constant C. As long as C 6= 0 the roots of ϕi remain unchanged
whatever we choose C to be. We therefore choose C s.t. ϕ(xi) = 1. Hence,

1 = ϕi(xi) = C

n∏
j=0,j 6=i

(xi − xj)⇒ C =
1

n∏
j=0,j 6=i

(xi − xj)

Hence,

ϕi(x) =

n∏
j=0,j 6=i

(x− xj)

n∏
j=0,j 6=i

(xi − xj)

Hence, the polynomial p of degree at most n that interpolates the points {(xi, yi) : i =
0, 1, · · · , n} is

p(x) =

n∑
j=0

yjϕj(x)

since by construction of ϕi

p(xi) =

n∑
j=0

yjϕj(xi) =

n∑
j=0

yjδij = yiδii = yi

Note that p has degree at most n since it is a sum of degree n polynomials.

12. Sets.

For sets E,F and D prove the following:

(a) Commutativity: E ∩ F = F ∩ E and E ∪ F = F ∪ E;

(b) Associativity: D ∩ (E ∩ F ) = (D ∩ E) ∩ F and D ∪ (E ∪ F ) = (D ∪ E) ∪ F ;

(c) Distributivity: D ∩ (E ∪F ) = (D ∩E)∪ (D ∩F ) and D ∪ (E ∩F ) = (D ∪E)∩ (D ∪F );

(d) De Morgan laws: (E ∩ F )c = Ec ∪ F c and (E ∪ F )c = Ec ∩ F c.

Solution: A standard approach to show that two sets A and B are equal is to first show
A ⊆ B and then B ⊆ A. These two inclusions together imply A = B. We are going to
use this approach in each part of the problem.

(a) Let x ∈ E ∩ F . As E ∩ F ⊆ F , we have x ∈ F . As E ∩ F ⊆ E, we have x ∈ E.
Thus, we have x ∈ F and x ∈ E; that is, x ∈ F ∩E. Since any element of E ∩ F is
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in F ∩ E, we have E ∩ F ⊆ F ∩ E. The reversed inclusion (i.e., F ∩ E ⊆ E ∩ F ) is
proved analogously (just swap the roles). Thus, we conclude E ∩ F = F ∩ E.

Now, let x ∈ E ∪ F . By definition of E ∪ F , at least one among x ∈ E and x ∈ F
holds true. If x ∈ E, we have x ∈ F ∪ E, as E ⊆ F ∪ E. If x ∈ F , we have
x ∈ F ∪E, as F ⊆ F ∪E. Thus, in either case we have x ∈ F ∪E. Thus, it follows
that E∪F ⊆ F ∪E. Similarly, we can show F ∪E ⊆ F ∪F , which allows to conclude
E ∪ F = F ∪ E.

(b) We show the associativity of intersection. The associativity of inclusion is proved
with a similar argument.

Let x ∈ D∩ (E∩F ). Thus, x ∈ D and x ∈ E∩F . As x ∈ E∩F , we have x ∈ E and
x ∈ F . Now, as x ∈ D and x ∈ E, we have x ∈ D∩E. As x ∈ D∩E and x ∈ F , we
conclude x ∈ (D∩E)∩F . Thus, we have D∩ (E ∩F ) ⊆ (D∩E)∩F . The reversed
inclusion is proved analogously and allows to conclude D ∩ (E ∩ F ) = (D ∩E)∩ F .

(c) Let x ∈ D∩ (E∪F ). Then x ∈ D and in at least one of E and F . If x ∈ E, we have
x ∈ D∩E. If x ∈ F , we have x ∈ D∩F . So, x is always in at least one among D∩E
and D∩F ; that is, x ∈ (D∩E)∪(D∩F ). This shows D∩(E∪F ) ⊆ (D∩E)∪(D∩F ).

Now, let x ∈ (D ∩E) ∪ (D ∩ F ). If x ∈ D ∩E, we have x ∈ D and x ∈ E ⊆ E ∪ F ;
thus, x ∈ D ∩ (E ∪ F ). Similarly, if x ∈ D ∩ F , we have x ∈ D and x ∈ F ⊆
E ∪ F l this, x ∈ D ∩ (E ∪ F ). This shows the reversed inclusion and we conclude
D ∩ (E ∪ F ) = (D ∩ E) ∪ (D ∩ F ).

Now, let x ∈ (D ∪ E) ∩ (D ∪ F ). Then, x ∈ D ∪ E and x ∈ D ∪ F . If x ∈ D,
then x ∈ D ⊆ D ∪ (E ∩ F ). Now, assume x 6∈ D. Then, as x ∈ D ∪ E, it follows
x ∈ E. Similarly, as x ∈ D ∪ F , it follows x ∈ F . Thus, x ∈ E and x ∈ F . Hence,
x ∈ E ∩ F ⊆ D ∪ (E ∩ F ). This shows (D ∪ E) ∩ (D ∪ F ) ⊆ D ∪ (E ∩ F ).

Now, let x ∈ D ∪ (E ∩ F ). If x ∈ D, then x ∈ D ⊆ D ∪ E and x ∈ D ⊆ D ∪ F ;
as x ∈ D ∪ E and D ∪ F , we have x ∈ (D ∪ E) ∩ (D ∩ F ). Now, assume x 6∈ D.
As x ∈ D ∪ (E ∩ F ), it follows that x ∈ E ∩ F . In particular, x ∈ E ⊆ D ∪ E and
x ∈ F ⊆ D ∪ F . So, x ∈ (D ∪E) ∩ (D ∪ F ). This proves the reversed inclusion and
we get the sought equality.

(d) Let x ∈ (E ∩ F )c. If x ∈ Ec, then x ∈ Ec ∪ F c. So, assume x 6∈ Ec; that is, assume
x ∈ E. Then, it has to be the case that x ∈ F c: indeed, if x ∈ F were true, we’d
have x ∈ E ∩ F , contradicting that x ∈ (E ∩ F )c. Thus, if x ∈ (E ∩ F )c, at least
one among x ∈ Ec and x ∈ F c holds; that is x ∈ Ec ∪ F c.

Now, assume that x ∈ Ec ∪ F c. At least one among x ∈ Ec and x ∈ F c holds. If
x ∈ Ec, then x 6∈ E, so x 6∈ E ∩ F , as E ∩ F ⊆ E. If x ∈ F c, then x 6∈ F , so
x 6∈ E ∩ F , as E ∩ F ⊆ F . In either case, we have x 6∈ E ∩ F ; that is, x ∈ (E ∩ F )c.
This concludes the proof of (E ∩ F )c = Ec ∪ F c.

Let x ∈ (E ∪ F )c. Then, x 6∈ E: indeed, if x ∈ E, then x ∈ E ⊂ E ∪ F , which is
impossible, as x ∈ (E ∪ F )c. Similarly, x 6∈ F . Thus, x ∈ Ec and x ∈ F c. Thus,
x ∈ Ec ∩ F c. Hence, (E ∪ F )c ⊆ Ec ∩ F c.

Now, assume x ∈ Ec ∩ F c. As x ∈ Ec, x 6∈ E. Similarly, x 6∈ F . So, x is neither in
E nor in F . Thus, by definition of E ∪ F , x 6∈ E ∪ F . Hence, x ∈ (E ∪ F )c. So, we
get the reversed inclusion.

13. Representations of numbers.

Prove that a real number is a rational number if and only if the decimal representation becomes
periodic.
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Solution: Let q ∈ Q. Without loss of generality (in short, wlog) we may assume q ∈ [0, 1)
by removing the integral part.
Let q = a

b where 0 ≤ a < b and a, b are natural numbers. We define recursively two
sequences of numbers, (an)n∈N and (rn)n∈N, by means of long division by b. We set
a0 = 0 and r0 = a. Then, the recursion is as follows: 10rn−1 = anb + rn, where
0 ≤ rn < b. That is, rn is the remainder of the division of 10rn−1 by b (convince
yourself of this by writing out a few terms!). By construction of (an)n∈N and (rn)n∈N,
a
b − (a1

10 + · · · + an

10n ) = rn
b 10−n < 10−n. Therefore, ai must be the i-th digit in the

decimal expansion of q, that is, q = 0.a1a2a3 · · · . Since ri is a natural number that is the
remainder of a division by b, we have ri ∈ {0, · · · , b − 1}. So, after b + 1 steps of this,
a remainder ri must have been repeated more once, because ri can only take at most b
values. This means that the sequence of ai must repeat at one point and the recurring
sequence cannot be longer than b in length. This finishes the proof.

(⇐) Let a = z.x1 · · ·xmy1 · · · yn be the decimal expansion of a real number a. Then,

10ma = zx1 · · ·xm.y1 · · · yn

and
10m+na = zx1 · · ·xmy1 · · · yn.y1 · · · yn.

Thus,

(10m+n − 10m)a = zx1 · · ·xmy1 · · · yn − zx1 · · ·xm ∈ Z

=⇒ a =
zx1 · · ·xmy1 · · · yn − zx1 · · ·xm

10m+n − 10m
⇒ a ∈ Q.
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