
Analysis I (English)
Roberto Svaldi and Stefano Filipazzi
Fall Semester 2021–2022

Analysis 1 - Exercise Set 14

Remember to check the correctness of your solutions whenever possible.

To solve the exercises you can use only the material you learned in the course.

1. State on which closed intervals the following function is integrable and compute the antideriva-
tives:

f(x) =
1

1− x2
.

Solution:

The function is continuous and hence integrable on every closed interval contained in
R \ {±1}. We compute the antiderivative formally as follows: this is a rational function,
so we write

1

1− x2
=

1

(1− x)(1 + x)
=

1

2

1− x+ 1 + x

(1− x)(1 + x)
=

1

2

(
1

1 + x
+

1

1− x

)
So

F (x) =
1

2

(∫
1

1 + x
dx+

∫
1

1− x
dx

)
=

1

2
(log |1 + x| − log |1− x|) + c

=
1

2
log

∣∣∣∣1 + x

1− x

∣∣∣∣+ c.

2. (a) Compute
∫ 1

0
3x2+3

x6+6x4+9x2+1dx. (Hint: recall arctan(t)′)

(b) Compute
∫ 1

0
x2+x−2

x3+2x2+x+2dx.

(c) Compute
∫ 1

0
x4+8x3−4x2−4x

x4−x2−12 dx.

Solution:

(a) We know that arctan(t)′ = 1
t2+1 . We observe that x6 + 6x4 + 9x2 = (x3 + 3x)2 and

that (x3 + 3x)′ = 3x2 + 3. So∫ 1

0

3x2 + 3

x6 + 6x4 + 9x2 + 1
dx =

∫ 1

0

3x2 + 3

(x3 + 3x)2 + 1
dx = arctan(x3 + 3x)|10 = arctan(4).

(b) We observe that x2+x−2
x3+2x2+x+2 = (x−1)(x+2)

(x2+1)(x+2) =
x−1
x2+1 , so∫ 1

0

x2 + x− 2

x3 + 2x2 + x+ 2
dx =

1

2

∫ 1

0

2x

x2 + 1
dx−

∫ 1

0

1

x2 + 1
dx

=
1

2
log(x2 + 1)|10 − arctan(x)|10 =

1

2
log(2)− π

4



(c) We factor the denominator into irreducible factors:

x4 − x2 − 12 = (x2 + 3)(x− 2)(x+ 2).

We want to write

x4 + 8x3 − 4x2 − 4x

(x2 + 3)(x− 2)(x+ 2)
=

Ax+B

x2 + 3
+

C

x− 2
+

D

x+ 2
+ E.

We compute

Ax+B

x2 + 3
+

C

x− 2
+

D

x+ 2
+ E =

(Ax+B)(x2 − 4) + C(x2 + 3)(x+ 2) +D(x2 + 3)(x− 2) + E(x2 + 3)(x2 − 4)

(x2 + 3)(x2 − 4)

=
Ex4 + (A+ C +D)x3 + (B + 2C − 2D − E)x2 − (4A− 3C − 3D)x− 4B + 6C − 6D − 12E

(x2 − 3)(x2 − 4)

So we need to solve the linear system

E = 1

A+ C +D = 8

B + 2C − 2D − E = −4

−4A+ 3C + 3D = −4

−4B + 6C − 6D − 12E = 0

It has solution A = 4, B = −3, C = 2, D = 2, E = 1. So

x4 + 8x3 − 4x2 − 4x

x4 − x2 − 12
=

4x− 3

x2 + 3
+

2

x− 2
+

2

x+ 2
+ 1

We compute the resulting integrals separately∫ 1

0

2

x− 2
+

2

x+ 2
+ 1dx = (2 log |x2 − 4|+ x)|10 = 2 log

3

4
+ 1

∫ 1

0

4x− 3

x2 + 3
dx = 2

∫ 1

0

2x

x2 + 3
dx− 3

∫ 1

0

1

x2 + 3
dx = (2 log |x2 + 3|)|10 −

√
3

∫ 1

0

1√
3(

x√
3

)2
+ 1

dx

= 2 log
4

3
−

√
3 arctan

(
x√
3

)∣∣∣∣1
0

= 2 log
4

3
− π

2
√
3

So ∫ 1

0

x4 + 8x3 − 10x2 − 2x

x4 − x2 − 12
dx = 1− π

2
√
3
.

3. Calculate the following formal integrals

(a)
∫ x(x2+x−2)

(x2−x+2)(x−2)2 dx.

(b)
∫

3x+4
1+x2 dx (Hint: recall (arctan(x))′).

Page 2



Solution:

(a) We observe that x2 − x + 2 has no real solutions because the discriminant of the
quadratic polynomial is (−1)2 − 4 · 1 · 2 = −7 < 0. We want to write the rational
function as

x(x2 + x− 2)

(x2 − x+ 2)(x− 2)2
=

Ax+B

x2 − x+ 2
+

C

(x− 2)2
+

D

x− 2
+ E

for suitable A,B,C,D,E, F ∈ R. So we compute

Ax+B

x2 − x+ 2
+

C

(x− 2)2
+

D

x− 2
+ E

=
(Ax+B)(x2 − 4x+ 4) + C(x2 − x+ 2) +D(x− 2)(x2 − x+ 2) + E(x2 − 4x+ 4)(x2 − x+ 2)

(x2 − x+ 2)(x− 2)2

=
Ex4 + (A+D − 5E)x3 + (B − 4A+ C − 3D + 10E)x2

(x2 − x+ 2)(x− 2)2

+
(4A− 4B − C + 4D − 12E)x+ 4B + 2C − 4D + 8E

(x2 − x+ 2)(x− 2)2

Since x(x2 + x− 2) = x3 + x2 − 2x, we have to take E = 0 and we need to solve the
linear system of equations 

A+D = 1

B − 4A+ C − 3D = 1

4A− 4B − C + 4D = −2

4B + 2C − 4D = 0

It has solution A = −1, B = 1, C = 2, D = 2, so

x(x2 + x− 2)

(x2 − x+ 2)(x− 2)2
=

1− x

x2 − x+ 2
+

2

(x− 2)2
+

2

x− 2
.

We compute the three resulting integral separately.∫
2

(x− 2)2
dx = − 2

x− 2
+ C,

∫
2

x− 2
dx = 2 log |x− 2|+ C∫

1− x

(x2 − x+ 2)
dx = −1

2

∫
2x− 1

x2 − x+ 2
− 1

x2 − x+ 2
dx = −1

2
log |x2−x+2|+1

2

∫
1

(x− 1
2 )

2 + (2− 1
4 )

dx

the integral on the right is

1

2

∫
1

(x− 1
2 )

2 + 7
4

dx =
4

7

√
7

4

∫ 2√
7

( 2√
7
(x− 1

2 ))
2 + 1

dx =
1√
7
arctan

(
2x− 1√

7

)
+ C

So∫
x(x2 + x− 2)

(x2 − x+ 2)(x− 2)2
dx = − 2

x− 2
− 2 log |x− 2|+ 1

2
log |x2 − x+ 2|+ 1√

7
arctan

(
2x− 1√

7

)
+ C.

(b) We separate the quotient into two terms∫
3x+ 4

1 + x2
dx =

∫ (
3x

1 + x2
+

4

1 + x2

)
dx =

3

2

∫
2x

1 + x2
dx+ 4

∫
1

1 + x2
dx

=
3

2
log
(
1 + x2

)
+ 4arctan(x) + C .
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4. Calculate the following integrals.

(a)
∫ 3

2
x2+1
x2−1 dx

(b)
∫ 3

2

√
x+1
x dx

Solution:

(a) This is an integral of a rational function. We want

x2 + 1

x2 − 1
= A+

B

x− 1
+

C

x+ 1
=

Ax2 + (B + C)x+ (−A+B − C)

x2 − 1
.

And it turns out that A = 1, B = 1 and C = −1. So the integral turns into∫ 3

2

x2 + 1

x2 − 1
dx =

∫ 3

2

dx+

∫ 3

2

1

x− 1
dx−

∫ 3

2

1

x+ 1
dx

= x
∣∣∣3
2
+ log(x− 1)

∣∣∣3
2
− log(x+ 1)

∣∣∣3
2
= 1 + log

(
3

2

)
.

(b) Take u =
√
1 + x which means that x = u2−1 and that dx = 2u du. Also note that

u(2) =
√
3 and u(3) = 2. Now we have∫ 3

2

√
x+ 1

x
dx = 2

∫ 2

√
3

u2

u2 − 1
du = 2

∫ 2

√
3

(
1 +

1

u2 − 1

)
du

= 2

∫ 2

√
3

du+

∫ 2

√
3

u+ 1− (u− 1)

(u+ 1)(u− 1)
du

= 2

∫ 2

√
3

du+

∫ 2

√
3

1

u− 1
du−

∫ 2

√
3

1

u+ 1
du

=

[
2u+ log

(∣∣∣∣u− 1

u+ 1

∣∣∣∣)]2√
3

= 4− 2
√
3 + log

( √
3 + 1

3(
√
3− 1)

)
.

5. Let f : E → R, E =]a, b[ an open interval. Assume that f is differentiable on E and that there
exists a positive real number C > 0 such that |f ′(x)| ≤ C, ∀x ∈ E. Show that f is Lipschitz.

Solution: By the Mean Value Theorem, ∀x, y ∈ E, there exists c ∈]x, y[ such that
f(x)− f(y) = f ′(c)(x− y). Thus, as |f ′(c)| ≤ C, by assumption, then

|f(x)− f(y)| = |f ′(c)| · |x− y| ≤ C|x− y|.

6. Compute the following improper integrals

(a)
∫ +∞
1

x√
(x2+5)3

dx

(b)
∫ +∞
0

arccot x
1+x2 dx

(c)
∫ +∞
0

(
x3(8 + x4)−5/3 + 2xex

)
dx
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Solution:

(a) We have ∫
x√

(x2 + 5)3
dx =

1

2

∫
2x(x2 + 5)−3/2dx = − 1√

x2 + 5
+ c

And

lim
t→+∞

(
− 1√

x2 + 5

∣∣∣∣t
1

)
= lim

t→∞

(
− 1√

t2 + 5
+

1√
6

)
=

1√
6

(b) We have∫
arccot(x)

1 + x2
dx = −

∫
arccot(x) arccot′(x)dx = −1

2
arccot2(x) + c

so the result is

lim
t→+∞

(
−1

2
arccot2(t) +

1

2
arccot2(0)

)
=

1

2
arccot2(0) =

π2

8
.

(c) We can split by linearity this integral into the sum of two integral, the second can
be done integrating by part, the result is∫ (

x3(8 + x4)−5/3 + 2xex
)
dx = −3

8

1
3
√

(8 + x4)2
+ 2xex − 2ex + c

Now we compute the limit

lim
t→+∞

(
−3

8

1
3
√

(8 + t4)2
+ 2et(t− 1) +

3

32
+ 2

)
= +∞

7. Find a recursive formula for Tn =
∫
cos2n(x)dx ∀n ∈ N.

Solution: Using integration by parts and the relation sin2(x) = 1− cos2(x) we get

Tn =

∫
cos2n(x)dx

=

∫
(1− sin2(x)) cos2n−2(x)dx

=

∫
cos2n−2(x)dx−

∫
sin2(x) cos2n−2(x)dx

= Tn−1 +
1

2n− 1

∫
sin(x)(2n− 1)(− sin(x)) cos2n−2(x)dx

= Tn−1 +
sin(x) cos2n−1(x)

2n− 1
− 1

2n− 1

∫
cos(x) cos2n−1(x)dx

= Tn−1 +
sin(x) cos2n−1(x)

2n− 1
− Tn

2n− 1
.

Hence, rearranging the equation, we get

2n

2n− 1
Tn = Tn−1 +

sin(x) cos2n−1(x)

2n− 1
,
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which can then be disguised as

Tn =
sin(x) cos2n−1(x)

2n
+

2n− 1

2n
Tn−1.

8. Find the radius and interval of convergence for each series.

(a)
∑∞

k=1
7k−22

k2(55k+94) (x+ 2)k

(b)
∑∞

k=0
4

(k+5)! (x+ 6)k

(c)
∑∞

k=1
k·k!

k4+3k2 (x− 1)k

Solution:

(a) Let ak = 7k−22
k2(55k+94) , then

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

(7(k + 1)− 22) · k2(55k + 94)

(k + 1)2(55(k + 1) + 94)(7k − 22)
= 1.

So the radius of convergence is R = 1. If x = −1 or x = −3 the series is absolutely
convergent by comparison criterion because 0 ≤ 7k−22

k2(55k+94) ≤ 7
55k2 . So the interval

of convergence is [−3,−1].

(b) Let ak = 4
(k+5)! , then

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

1

k + 6
= 0.

So the radius of convergence is R = +∞ and the interval of convergence is all of the
real line ]−∞,+∞[.

(c) Let ak = k·k!
k4+3k2 , then

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

(k + 1)2(k4 + 3k2)

k((k + 1)4 + 3(k + 1)2)
= +∞.

So the radius of convergence is R = 0 and the interval of convergence is {1} = [1, 1].

9. State if the following integrals converge or diverge.

(a)
∫ +∞
7

x
(
√
x2−33)2

dx

(b)
∫ +∞
0

xe−x2

dx

Solution:

(a) Remark that when x > 7 we have x
(
√
x2−33)2

> 1
x so by comparison the integral is

divergent.
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(b) We compute the integral∫ z

0

xe−x2

dx = −1

2
e−x2

∣∣∣∣z
0

= −1

2
e−z2

+
1

2
.

Since limz→+∞ − 1
2e

−z2

+ 1
2 = 1

2 , the integral converges.

10. For each of the following functions compute the Taylor series at 0, compute the radius of
convergence and show that the function equals its Taylor series.

(a) ex

(b) sin(x)

Solution:

(a) We observe that (ex)′ = ex, so (ex)(n) = ex for all n > 0 and has value 1 at x = 0.
So the Taylor series of ex is

∑∞
n=0

1
n!x

n. We compute the radius of convergence:

limn→∞
n!

(n+1)! = limn→∞
1

n+1 = 0, so the Taylor series converges for all x ∈ R. Let
]a, b[ be an open interval containing 0. To prove that f(x) = ex equals its Taylor
series for x ∈]a, b[, we need to compute the limit

lim
n→∞

sup
y∈]a,b[

|f (n)(y)| |x|
n

n!
= lim

n→∞
eb
|x|n

n!
= eb lim

n→∞

|x|n

n!
,

which estimates the error of the (n−1)-st order Taylor polynomial (remember that,
for a function of class Cn, the error for the (n − 1)-st Taylor polynomial is given

by f(n)(ξ)
n! (x− x0)

n, where x0 is the center of the expansion, which is 0 in this case,
and ξ is a suitable point between x and x0).

But limn→∞
|x|n
n! for all x ∈ R because we just proved that the series

∑∞
n=0

1
n!x

n

converges for all x ≥ 0. Then ex equals its Taylor series for x ∈]a, b[ for all open
intervals ]a, b[, and hence for all x ∈ R.

(b) We recall that

sin(n)(x) =

{
(−1)

n−1
2 cos(x) n odd

(−1)
n
2 sin(x) n even

So the Taylor series of sin(x) at 0 is
∑∞

k=0
(−1)k

(2k+1)!x
2k+1, it converges for all x ∈ R

because the radius of convergence is +∞, as

lim
k→∞

∣∣∣ (−1)k+1

(2(k+1)+1)!

∣∣∣∣∣∣ (−1)k

(2k+1)!

∣∣∣ = lim
k→∞

1

(2k + 3)(2k + 2)
= 0.

To prove that f(x) = sin(x) equals its Taylor series for x ∈ R, we use the fact
that all derivatives of sin(x) are bounded above in absolute value by the constant
function 1. So

lim
n→∞

sup
y∈R

|f (n)(y)| |x|
n

n!
= lim

n→∞

|x|n

n!
= 0.
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11. Compute the Taylor series of the following functions at 0 and determine the radius of conver-

gence. (Hint: Recall the following Taylor series log(y) =
∑∞

k=1
(−1)k+1

k (y − 1)k and use the
uniqueness of the Taylor series.)

(a) f(x) = log(1 + x)

(b) f(x) = 1
1+x

(c) f(x) = 1
(1−x)2

Solution:

(a) Recall from the lecture that log(y) =
∑∞

k=1
(−1)k+1

k (y − 1)k around 1 with radius
of convergence 1. So the equality holds for all y ∈]0, 2[. Let x = y − 1, then for

x ∈]− 1, 1[, we have log(1 + x) = log y =
∑∞

k=1
(−1)k+1

k (y − 1)k =
∑∞

k=1
(−1)k+1

k xk.
The radius of convergence is the same, i.e. 1, because the coefficients of the power
series are the same.

(b) We observe that (log(1 + x))′ = 1
1+x . So we can use the derivative of the Taylor

series of (log(1+ x))′ computed above to determine the Taylor series of 1
1+x around

0.

1

1 + x
= (log(1 + x))′ =

( ∞∑
k=1

(−1)k+1

k
xk

)′

=

∞∑
k=1

(−1)k+1xk−1 =

∞∑
k=0

(−1)kxk.

The radius of convergence remains equal to 1, because the function f is not defined
at −1.

(c) We observe that 1
(1−x)2 =

(
1

1−x

)′
. By uniqueness of the Taylor series, the Taylor

series of 1
1−x can be computed by substituting y = −x into the Taylor series of 1

1+y .

So 1
1−x =

∑∞
k=0(−1)k(−x)k =

∑∞
k=0 x

k at 0 with radius of convergence 1, and

1

(1− x)2
=

( ∞∑
k=0

xk

)′

=

∞∑
k=1

kxk−1 =

∞∑
k=0

(k + 1)xk.

with radius of convergence 1 because the function f is nor defined at 1.

12. Compute the following integrals using Taylor series. Your answer should be in the form of an
explicit numerical series, but you do not need to compute the sum of the series.

(a)
∫ 1

2

0
log(1 + 2x2)dx

(b)
∫ 1

0
sin(x3)dx

Solution:

(a) By uniqueness of the Taylor series, the Taylor series of log(1 + 2x2) on the interval
]−1, 1[ can be computed by substituting y = 2x2 into the Taylor series of log(1+y)
computed in a previous exercise. So

log(1 + 2x2) =

∞∑
k=1

(−1)k+1

k
(2x2)k =

∞∑
k=1

(−1)k+12k

k
x2k,
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and we can compute the integral termwise because [0, 1
2 ] ⊆]− 1, 1[:

∫ 1
2

0

log(1 + 2x2)dx =

∞∑
k=1

(−1)k+12k

k

∫ 1
2

0

x2kdx =

∞∑
k=1

(−1)k+12k

k

x2k+1

2k + 1

∣∣∣∣
1
2

0

=

∞∑
k=1

(−1)k+1

k(2k + 1)

1

2k+1
.

(b) By uniqueness of the Taylor series, the Taylor series of sin(x3) can be computed by
substituting y = x3 into the Taylor series of sin(y) computed in a previous exercise.

So sin(x3) =
∑∞

k=0
(−1)k

(2k+1)!x
3(2k+1), and we can compute the integral termwise:

∫ 1

0

sin(x3)dx =

∞∑
k=0

(−1)k

(2k + 1)!

∫ 1

0

x6k+3dx =

∞∑
k=0

(−1)k

(2k + 1)!

1

6k + 4
.

13. Compute the following improper integrals

(a)
∫ +∞
1/2

1√
2x(2x+1)

dx

(b)
∫ +∞
0

9x+8
(x+2)(x2+1)dx

Solution:

(a) Making the change of variables u =
√
2x (hence u2 = 2x, because x > 0, and

u du = dx) we get ∫
1

u2 + 1
du = arctan(u) + c

hence we have to compute the following

lim
t→∞

(
arctan(

√
2t)− arctan(1)

)
=

π

2
− π

4
=

π

4
.

(b) Write
9x+ 8

(x+ 2)(x2 + 1)
=

A

x+ 2
+

Bx+ C

x2 + 1
.

We get A = −2, B = 2 and C = 5, so∫
9x+ 8

(x+ 2)(x2 + 1)
dx = log

(
x2 + 1

(x+ 2)2

)
+ 5arctan(x) + c

so the final result is

lim
t→∞

(
log

(
t2 + 1

(t+ 2)2

)
− log

(
1

4

)
+ 5arctan(t)− arctan(0)

)
= log(1) + log(4) + 5

π

2
− 0

=
5

2
π + log(4).

14. Find the radius and interval of convergence for each series.

(a)
∑∞

n=0 n(x− 5)n
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(b)
∑∞

n=0

(
1 + 1

n

)n
(x+ 3)n

(c)
∑∞

n=0
n!
nnx

n (without checking the boundary points)

Solution:

(a) Define an = n. We know that if limn→∞ |an+1/an| = L then the radius of conver-
gence is R = 1/L. We have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

n+ 1

n
= 1.

So the radius of convergence is R = 1 and the convergence interval is T =]4, 6[. Note
that we removed the boundaries 4 and 6 since the power series will be divergent for
x = 4 and x = 6, since the sequences n and (−1)nn do not converge to 0, as so their
series cannot possibly converge.

(b) Define an =
(
1 + 1

n

)n
. We know that if limn→∞ |an|1/n = L then the radius of

convergence is R = 1/L. We have

lim
n→∞

∣∣∣∣∣
((

1 +
1

n

)n)1/n
∣∣∣∣∣ = lim

n→∞

∣∣∣∣1 + 1

n

∣∣∣∣ = 1.

So the radius of convergence is R = 1 and the interval of convergence is I =]−4,−2[
and the boundaries of the interval are excluded because the series will be divergent
for x = −4 and x = −2. Indeed, if x = −2, we consider

∑∞
n=0

(
1 + 1

n

)n
, and if

x = −4, we consider
∑∞

n=0(−1)n
(
1 + 1

n

)n
, and in both cases the sequence we are

taking the series of does not converge to 0.

(c) Define an = n!
nn . We have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(n+1)!
(n+1)n+1

n!
nn

= lim
n→∞

(n+ 1) · 1

n+ 1
·
(

n

n+ 1

)n

= lim
n→∞

1

(1 + 1
n )

n
=

1

e
= L,

so the radius of convergence is R = 1
L = e.

15. State if the following integrals converge or diverge. Motivate your answer.

(a)
∫ +∞
1

log x
x2 dx

(b)
∫ +∞
1

1√
1+x

dx.

Solution:

(a) We compute the truncated integral by parts:∫ z

1

log x

x2
dx = − log x

x

∣∣∣∣z
1

+

∫ z

1

1

x2
dx = − log z

z
− 1

z
+ 1.
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Since limz→+∞
log z
z = 0 by L’Hôpital, we have∫ +∞

1

log x

x2
dx = lim

z→+∞

log z

z
− 1

z
+ 1 = 1.

So the integral converges.

(b) We observe that a primitive of (1 + x)−1/2 is 2(1 + x)1/2, so∫ +∞

1

1√
1 + x

dx = lim
z→+∞

∫ z

1

1√
1 + x

dx = lim
z→+∞

2(1 + z)1/2 − 2
√
2 = +∞

and the integral diverges.

16. For each of the following functions compute the Taylor series at 0, compute the radius of
convergence and show that the function equals its Taylor series.

(a) cos(x)

(b) sinh(x)

Solution:

(a) For the function cos(x) it suffices to recall that it is the derivative of the function
sin(x), that we can compute derivatives of converging power series termwise, so the
uniqueness of the derivative gives

cos(x) = (sin(x))′ =

( ∞∑
k=0

(−1)k

(2k + 1)!
x2k+1

)′

=

∞∑
k=0

(−1)k

(2k)!
x2k

for all x ∈ R. By uniqueness of the Taylor series, this power series is the Taylor
series of cos(x).

(b) We recall that

(sinh(x))(n) =

{
cosh(x) n odd

sinh(x) n even.

So the Taylor series of sinh(x) at 0 is
∑∞

k=0
1

(2k+1)!x
2k+1 and converges for all x ∈ R

because limk→∞
1

(2(k+1)+1)!
1

(2k+1)!

= 0. Let a > 0. To prove that f(x) = sinh(x) equals its

Taylor series for x ∈]− a, a[, we compute the limit

lim
n→∞

sup
y∈]−a,a[

|f (n)(y)| |x|
n

n!
≤ lim

n→∞
cosh(a)

|x|n

n!
= cosh(a) lim

n→∞

|x|n

n!
= 0.

In the computation, we used that the n-th derivative is either cosh or sinh, but
cosh(t) > sinh(t) for all t, so we can estimate any derivative (regardless of n even
or odd) with cosh. Since it holds for all intervals ] − a, a[, then sinh(x) equals its
Taylor series for all x ∈ R.

17. Compute the Taylor series of the following functions at 0 and determine the radius of conver-
gence.
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(a) f(x) = 15
6−8x

(b) f(x) = 2xe4x
2

(c) f(x) = arccotx

Solution:

(a) We observe that 15
6−8x = 15

6
1

1− 4
3x

. By uniqueness of the Taylor series, we can com-

pute the Taylor series by substituting y = − 4
3x in the Taylor series of 1

1+y at 0
computed above. So

15

6− 8x
=

15

6

∞∑
k=0

(−1)k
(
−4

3
x

)k

=

∞∑
k=0

15

6

(
4

3

)k

xk.

Since limk→+∞
k

√
15
6

(
4
3

)k
= 4

3 , the radius of convergence is 3
4 .

(b) We observe that 2xe4x
2

= 1
4 (e

4x2

)′. So by substituting y = 4x2 in the Taylor series
of ey we get

2xe4x
2

=
1

4

( ∞∑
k=0

(4x2)k

k!

)′

=

( ∞∑
k=0

4k−1

k!
x2k

)′

=

∞∑
k=1

2 · 4k−1

(k − 1)!
x2k−1 =

∞∑
k=0

2 · 4k

k!
x2k+1.

It is the Taylor series of 2xe4x
2

by uniqueness of the Taylor series. For the radius
of convergence we need to compute the limit

lim
k→∞

2 · 4k+1

(k + 1)!

(
2 · 4k

k!

)−1

= lim
k→∞

4

k + 1
= 0.

So the radius of convergence is ∞.

(c) We observe that arccotx is a primitive of the function − 1
1+x2 . By uniqueness of the

Taylor series, we can compute the Taylor series of 1
1+x2 by substituting y = x2 in

the Taylor series of 1
1+y at 0. So

− 1

1 + x2
= −

∞∑
k=0

(−1)kx2k =

∞∑
k=0

(−1)k+1x2k

at 0 with radius of convergence
√
1 = 1. We are ready to compute the Taylor series

of arccotx as a formal integral

arccotx =

∫ ∞∑
k=0

(−1)k+1x2kdx+arccot(0) =

∞∑
k=0

(−1)k+1

2k + 1
x2k+1+arccot 0 =

π

2
+

∞∑
k=0

(−1)k+1

2k + 1
x2k+1

with the same radius of convergence, i.e. R = 1.

18. Compute the following integrals using Taylor series. Your answer should be in the form of an
explicit numerical series, but you do not need to compute the sum of the series.

(a)
∫ 1

3

0
1

1+x3 dx

(b)
∫ 1

0
cosh(

√
x)dx

Page 12



(c)
∫ 1

0
x4 sin(x3)dx

Solution:

(a) By uniqueness of the Taylor series, the Taylor series of 1
1+x3 on the interval ]− 1, 1[

can be computed by substituting y = x3 into the Taylor series of 1
1+y computed

above. So 1
1+x3 =

∑∞
k=0(−1)kx3k and

∫ 1
3

0

1

1 + x3
dx =

∞∑
k=0

(−1)k
∫ 1

3

0

x3kdx =

∞∑
k=0

(−1)k

33k+1(3k + 1)
.

(b) The Taylor series of cosh(y) can be computed as derivative of the Taylor series of

sinh(y), which was computed on an exercise above. So cosh(y) =
(∑∞

k=0
1

(2k+1)!y
2k+1

)′
=∑∞

k=0
1

(2k)!y
2k. By uniqueness of the Taylor series, the Taylor series of cosh(

√
x) on

[0,+∞[ can be computed by substituting y =
√
x in the Taylor series of cosh(y). So

cosh(
√
x) =

∑∞
k=0

1
(2k)!x

k, and

∫ 1

0

cosh(
√
x)dx =

∞∑
k=0

1

(2k)!

∫ 1

0

xkdx =

∞∑
k=0

1

(2k)!(k + 1)
.

(c) We recall that in a previous exercise we computed the Taylor series sin(x3) =∑∞
k=0

(−1)k

(2k+1)!x
6k+3. Then x4 sin(x3) =

∑∞
k=0

(−1)k

(2k+1)!x
6k+7 and

∫ 1

0

x4 sin(x3)dx =

∞∑
k=0

(−1)k

(2k + 1)!

∫ 1

0

x6k+7dx =

∞∑
k=0

(−1)k

(2k + 1)!(6k + 8)
.

Review Exercises

19. (Multiple Choice Question) The integral
∫ 2

1
x2 log x dx is

(a) 8
3 log(2) +

7
9

(b) 8
3 log(2)−

7
9

(c) 8 log(2)− 7
9

(d) 8 log(2) + 7
9

Solution: (b) is correct. We use integration by parts to get∫ 2

1

x2 log x dx =
x3

3
log x|21 −

∫ 2

1

x3

3

1

x
dx =

x3

3
log x|21 −

x3

9
|21 =

8

3
log(2)− 7

9
.

20. (Multiple Choice Question) The integral∫ 3/π

2/π

sin
(
1
x

)
x2

dx

is
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(a) 1
2

(b)
√
3
2

(c) − 1
2

(d) −
√
3
2

Solution: (a) is correct. Take u = 1
x then dx = − 1

u2 du so∫ 3/π

2/π

sin
(
1
x

)
x2

dx =

∫ π/3

π/2

u2 sin(u)(− 1

u2
) du = −

∫ π/3

π/2

sin(u) du = cos(u)|π/3π/2 =
1

2
.

21. The integral ∫ 1

0

x2ex dx

is

(a) e

(b) 2− e

(c) e+ 2

(d) e− 2

Solution: (d) is correct. We use integration by parts twice:∫ 1

0

x2ex dx = (x2ex)|10 −
∫ 1

0

2xex dx = (x2ex)|10 − 2

(
(xex)|10 −

∫ 1

0

ex dx

)
= (x2ex)|10 − 2

(
(xex)|10 − ex|10

)
= e− 2.

22. For each of the following sequences defined by recursion, show the convergence and find the
limit limn→∞ an.

(a) an+1 = 1+an

2+an
, a0 = 1.

(b) an+1 = 1 + 1
2a

2
n − 1

2an, a0 = 3
2 .

Solution:

(a) First we notice that if the sequence (an) is convergent then its limit limn→∞ an = a
must satisfy the relation:

a =
1 + a

2 + a
.

Assuming that a ̸= −2, the relation above is equivalent to the relation

a2 + a− 1 = 0
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Which has the solutions −1±
√
5

2 . Now we show by induction that 0 is a lower bound
for the sequence. We notice that a0 = 1 > 0 so the base of induction hold. Now we
assume that an > 0 then we have an+1 = 1+an

2+an
> 0. So by induction all an > 0.

So the only possible limit for the sequence is −1+
√
5

2 . Now we have to check if the
sequence is convergent or not. To show this, we use the fact that monotone and
bounded sequences are convergent. We showed that the sequence is bounded below
by zero, we just need to show that the sequence is monotone decreasing. Define the
difference sequence:

dn = an − an−1

we have to show that dn < 0 for all n for monotonicity of (an). We use induction.
For the base of induction we have d1 = a1 − a0 = 2/3 − 1 = −1/3. Now suppose
that dn = an − an−1 < 0, then we have:

dn+1 = an+1−an =
1 + an
2 + an

−1 + an−1

2 + an−1
=

an − an−1

(2 + an)(2 + an−1)
=

dn
(2 + an)(2 + an−1)

< 0.

So by induction, all dn < 0 meaning that (an) is a monotone decreasing sequence.
By putting everything together, (an) is a convergent sequence and it converges to
−1+

√
5

2 .

(b) If the limit a = lim
n→∞

an exists, it satisfies the equation

a = 1 +
1

2
a2 − 1

2
a , (1)

This equation is equivalent to

a2 − 3a+ 2 = (a− 1)(a− 2) = 0 ,

So a = 1 or a = 2.

We have

a2 = 1 +
1

2

(
3

2

)2

− 1

2
· 3
2
= 1 +

9

8
− 3

4
=

11

8
<

12

8
=

3

2
= a1 .

We show by induction that 1 is a lower bound for the sequence (an). We have

a1 =
3

2
≥ 1 ,

and if an−1 ≥ 1, it follows that

an = 1 +
1

2
a2n−1 −

1

2
an−1 = 1 +

1

2
an−1 (an−1 − 1) ≥ 1 .

We show by induction that the sequence is monotone decreasing. We already showed
that a2 ≤ a1 .

Suppose that an ≤ an−1. Since 1 is a lower bound for the sequence, we obtain

0 ≤ an − 1 ≤ an−1 − 1 ,

and so
an(an − 1) ≤ an−1(an−1 − 1) ,

since 0 < an ≤ an−1 (here it is important all quantities are positive to preserve
inequalities). Finally, we have

an+1 = 1 +
1

2
a2n − 1

2
an = 1 +

1

2
an(an − 1) ≤ 1 +

1

2
an−1(an−1 − 1) = an .

The sequence (an)n≥1 is bounded and monotone decreasing. So it is convergent and
the limit is a = lim

n→∞
an = 1.
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23. True/False If the statement is true, you should prove it. If the statement is false, you should
provide a counterexample.

(a) If (an) ⊂ R is a Cauchy sequence, then (a2n) is also a Cauchy sequence.

(b) If (a2n) is a Cauchy sequence then (an) is also a Cauchy sequence.

Solution:

(a) True.

Solution 1: Since (an) is Cauchy, it is convergent. Since the product of two
convergent sequences is convergent the sequence (a2n) is convergent and therefore is
Cauchy.

Solution 2: Using the definition of a Cauchy sequence for (a2n), we must show
that for a given ϵ > 0, we can find N ∈ N such that for all m,n > N we have
|a2m − a2n| ≤ ϵ.

To show this we note that (an) is Cauchy and so is convergent and bounded. Now
let ϵ > 0 be given and define M = max{an}∞n=1. Since (an) is Cauchy, we can find
N such that |am − an| ≤ ϵ/(2M) for all m,n > N . We now have

|a2m − a2n| = |am + an||am − an| ≤ 2M |am − an| ≤ 2M · ϵ

2m
= ϵ

for all m,n > N . This shows that (a2n) is a Cauchy sequence.

(b) False. The inverse statement is not necessarily true! For example let an = (−1)n and
so a2n = 1. (a2n) is a constant sequence, therefore it is convergent and so a Cauchy
sequence, on the other hand (an) does not converge, and so it cannot possibly be a
Cauchy sequence.

24. Check the convergence of the following series.

(a)
∑∞

n=1
e−n

n2 .

(b)
∑∞

n=1
n sin2 n
n3+1

(c)
∑∞

n=1
n+1

n2+2n+3

(d)
∑∞

n=1 e
−n

(e)
∑∞

n=1
(−1)n−1

√
3n−1

(f)
∑∞

n=1
n(

√
n+1)√

n3+2n2−1

(g)
∑∞

n=1
n3

(log 3)n

(h)
∑∞

n=1
(−5)n

42n+1(n+1)

(i)
∑∞

n=1
4n(n!)2

(n+2)!

Solution:

(a) We use the comparison test. Notice that 0 ≤ e−n

n2 < 1
n2 . And since

∑∞
n=1

1
n2 is

convergent, then
∑∞

n=1
e−n

n2 is also convergent.
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(b) We use the comparison test. Notice that 0 ≤ n sin2 n
n3+1 < n

n3+1 < 1
n2 . And since∑∞

n=1
1
n2 is convergent, then

∑∞
n=1

n sin2 n
n3+1 is also convergent.

(c) We have
n+ 1

n2 + 2n+ 3
>

n+ 1

n2 + 4n+ 3
=

n+ 1

(n+ 1)(n+ 3)
=

1

n+ 3

and
∑∞

n=1
1

n+3 is the harmonic series (just shifted in the indexes) and is divergent.

(d) This is a geometric series and is convergent since 0 < e−1 < 1.

(e) We use the Leibniz criterion. Define an = 1√
3n−1

. Then (an) is monotone decreasing

and converges to 0, so
∑∞

n=1
(−1)n−1

√
3n−1

is convergent.

(f) Note that

lim
n→∞

n(
√
n+ 1)√

n3 + 2n2 − 1
= 1.

So this series is not convergent.

(g) We use the ratio test. Define the sequence an = n3

(log 3)n . We have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(n+1)3

(log 3)n+1

n3

(log 3)n

= lim
n→∞

1

log 3
· (n+ 1)3

n3
=

1

log 3
< 1,

as 3 > e. So the series is convergent.

(h) We use the ratio test. Define the sequence an = (−5)n

42n+1(n+1) . We have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣
(−5)n+1

42n+3(n+2)

(−5)n

42n+1(n+1)

∣∣∣∣∣∣ = lim
n→∞

∣∣∣∣(−5) · 1

42
· n+ 1

n+ 2

∣∣∣∣ = 5

16
< 1.

So the series is convergent.

(i) We use the ration test. Define the sequence an = 4n(n!)2

(n+2)! . We have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

4n+1((n+1)!)2

(n+3)!

4n(n!)2

(n+2)!

= lim
n→∞

4 · (n+ 1)2
1

n+ 2
= ∞.

The series is divergent.

25. True/False. If the statement is true, you should prove it. If the statement is false, you should
provide a counterexample. Let (an) and (bn) be numerical sequences.

(a) If lim
n→∞

|an| = a, then lim sup
n→∞

an = a and lim inf
n→∞

an = −a.

(b) If lim sup
n→∞

|an| = 0, then (an) converges to zero.

(c) If lim sup
n→∞

an = 0, then an ≤ 0 for all n ∈ N.

(d) If lim sup
n→∞

an = lim inf
n→∞

bn = 0, then lim sup
n→∞

(an − bn) = 0.
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Solution:

(a) False. Take for example the constant sequence an = 1 for all n ∈ N. Then 1 =
lim
n→∞

|an| = lim sup
n→∞

an = lim inf
n→∞

an.

(b) True. Since 0 ≤ lim inf
n→∞

|an| ≤ lim sup
n→∞

|an|, we have lim inf
n→∞

|an| = lim sup
n→∞

|an| = 0.

So lim
n→∞

|an| = 0 and (an) converges to zero too.

(c) False. Take for example an = 1
n ≥ 0 for all n ∈ N∗. Then sup

{
1
n ,

1
n+1 , . . .

}
= 1

n ,
and so lim sup

n→∞
an = 0.

(d) False. Take for example an = (−1)n−1 and bn = (−1)n+1. Then sup{an, an+1, . . . } =
sup {0,−2} = 0 and inf{bn, bn+1, . . . } = inf{2, 0} = 0 for all n ∈ N, but an−bn = −2
for all n ∈ N.

26. Check if the limit of the following sequences exist.

(a) an = (−1)n

n+1

(b) an = (−1)n + (−1)n+2

(c) an = sinnπ + cosnπ

(d) an = 2(−1)n + n
n+1

Solution:

(a) Note that this sequence converges to 0.

(b) We see that an = −2 if n is odd and an = 2 if n is even. So limn→∞ an does not
exist.

(c) We have

an =

{
1 if n = 4k or n = 4k + 1

−1 if n = 4k + 2 or n = 4k + 3
,

so limn→∞ an does not exist.

(d) The subsequence a2n is equal to 2+ n
n+1 , so it converges to 3; the subsequence a2n+1

is equal to −2 + 1
n+1 , hence it converges to −1. We conclude that limn→∞ an does

not exist.

Page 18


