Analysis T (English)
Roberto Svaldi and Stefano Filipazzi
Fall Semester 2021-2022

Analysis

=Pi-L

1 - Exercise Set 14

Remember to check the correctness of your solutions whenever possible.

To solve the exercises you can use only the material you learned in the course.

1. State on which closed intervals the following function is integrable and compute the antideriva-

tives:

1
@) =1
Solution:
The function is continuous and hence integrable on every closed interval contained in
R\ {£1}. We compute the antiderivative formally as follows: this is a rational function,
so we write
1 1 Cll-a+l+z 1/ 1 1
1—22 (1-2)(1+2) 2(1-2)(1+2) 2\1+2 1-=2
So
1 1
F(z)=< d d
@) =3 (/1—|—a: er/l—x z)
1
= i(log\l—i—:ﬂ —log|l —z|)+¢
1 1 1+z
=-lo .
PRt i
2. (a) Compute fol %dl‘. (Hint: recall arctan(t)")
1 g24p
(b) Compute [, =452 dx.
1 (174 (1}'3— $2— xZ
(c) Compute fo J;%_m;l_m 4z 1.

Solution:

(a) We know that arctan(t)’

3z2 +3

/

d =
28 4+ 624 + 922 + 1 v

1

7. We observe that 20 4 62* + 92% = (2* + 32) and

that (z3 + 3z)" = 322 + 3. So

(b) We observe that

22 +x—2

34222 4+x+2 - (z24+1)(z+2) — x241°

23+ 222 +x+2

/

1 2
3 3
| G yde = ssetan(a® + 32} = avctan(4)
z24z—2 (z—1)(z4+2) _ z—1 .

1 /1 2z /1 Ly
r=- | ———do— | ———dx
2 Jo 2241 0o z2+1
1 9 1 11 ™
=3 log(z* + 1)|5 — arctan(x)|; = 3 log(2) — 1




(¢) We factor the denominator into irreducible factors:
ot — 22 —12 = (22 + 3)(z — 2)(z + 2).
We want to write

ot + 823 — 42% — 4x _ACL‘-‘,—B+ C L D L E
(22 +3)(z—2)(z+2) 22+3 -2 x+2 '

We compute

Ax+ B C D
z2 43 +x—2+x+2+E_
(Az + B)(2® —4) + C(2* 4+ 3)(z + 2) + D(2% + 3)(z — 2) + E(2? + 3)(2* — 4)

(2 +3)(x2 —4)

_ Ex*+ (A+C+ D)a*+ (B+2C — 2D — E)a* — (4A — 3C — 3D)x — 4B + 6C — 6D — 12E
N (22 = 3)(z2 — 4)
So we need to solve the linear system
E=1
A+C+D=38
B+2C—-2D—-FE=-4
—4A+3C+3D =—4
—4B+6C —-6D —12E =0
It has solution A=4,B=-3,C=2,D=2F=1. So
ot 4+ 823 —4x? —4x 4z —3 2 2
1_ 2 =2 + + +1
zt— 2% —12 z24+3 -2 x+2
We compute the resulting integrals separately
1
2 2 3
—— 4+ 1dx = (2log|z* — 4 L =2log= +1
| 575+ g+ e = (2logla® — 4l +o)l} = 2log ] +
1 1 1 1 1
4xr — 3 2z 1 3
——dxr =2 ——dz —3 ——dz = (21 2138 - 3/ —d.
/o 2243 /0 2437 /o 2243 (2log |+* + 3))[5 — V3 0 (i)2+1 !
V3
4 z \|' 4 s
=2log — — V/3arctan | — =2log - — ——
“3 <\/§) 3723
So
/1x4+8x3—10x2—2xdx o
0 x4 — 22 —12 N 23

3. Calculate the following formal integrals
x 7;2+1:—2
(a) [ g de.

(b) i’ﬁf;;‘ dx (Hint: recall (arctan(z))’).
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Solution:

(a) We observe that 2 — z + 2 has no real solutions because the discriminant of the
quadratic polynomial is (—1)2 —4-1-2 = —7 < 0. We want to write the rational
function as

z(z? +z—2) Az + B C D

= E
(22 —z+2)(x — 2)? x2—x—|—2+(m—2)2+x—2+

for suitable A, B,C, D, E, F € R. So we compute

Az + B N C N D iR
2?2—x+2 (x—-2)2 x-2

(Ar+ B)(2? —do+4) +C(2? —2+2)+ D(x —2)(2? =2+ 2) + E(2? — 4z + 4)(p? — 2 + 2)
(22 —x+2)(x —2)2
_ Ea*4+ (A+D—-5E)2® 4+ (B—4A+ C — 3D + 10E)a?
- (2 —z+2)(x — 2)?
(4A—4B—C+4D — 12E)x + 4B +2C — 4D + 8E
(22 —x+2)(x —2)2
Since z(z% 4+ x — 2) = 2% 4+ 2% — 2z, we have to take E = 0 and we need to solve the
linear system of equations
A+D=1
B-4A+C-3D =1
4A —4B - C+4D = -2
4B+2C -4D =0
It has solution A= —-1,B=1,C =2,D =2, so
r(2? + 2 —2)  1-x N 2 n 2
(2 —z+2)(x—2)2 22-2+2 (x-2)2 -2
We compute the three resulting integral separately.
2 2 2
—~  _drx=— dr =21 -2
/(x—2)2z x_2+C’, /x—QI oglr —2[+C
1—x 1 2z —1 1 1 1 1
———dr = —— - der =—-1 2 42|+
/(932—:64—2) ! 2/1’2—334—2 2 —zt2 2 og e et |+2/(m—§)2+(2—i)

the integral on the right is

2
1 1 47 Wi 1 <2x—1>
= —— —dr = = — dr = — arctan + C
2/(x—§>2+; T (Z@-hr it A V7
So

z(z? + 2 —2) 2 1 ) 1
dv=——=— —2log|z — 2| + =1 — 42|+ —= arct
/(wQ—x+2)(x—2)2 T= g~ 2logle — 2+ Flogla” —a + 2+ Zzarctan

(b) We separate the quotient into two terms

3z +4 3x 4 3 2x 1
doe= [ (2 4= Ndz=2 )L dut+4a|——4d
/1—|—x2 ¢ /(1+x2+1+x2> v 2/1—|—x2 v /1—1—332 v

= g log(1 4 z?) + 4 arctan(z) + C'.
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4. Calculate the following integrals.

a) f2 z +1 dx

x2_—

(b) 3V$+ dz

2 x

Solution:

(a) This is an integral of a rational function. We want

z?+1 B c Az’ + (B+C)z+ (—A+B-C)
R =A+ + = 2 .
x?—1 r—1 x+1 x? —1

And it turns out that A =1, B=1 and C' = —1. So the integral turns into

22 +1 o1
d d
/2:52—1 / x—l—/ x—1 /2x+1 *

3 3
—a| +1 —1‘ 1 1’ —1+log(2).
a:‘2+ og(x )2 og(x + )2 +og(2>

(b) Take u = \/1 + x which means that # = u? — 1 and that dz = 2u du. Also note that
u(2) = v/3 and u(3) = 2. Now we have

3 2 2 2
Vil 1
T gy =2 2“ du—2/ (1+ )du

B utl—(u—1)
o / du +/ (u+ 1)( ufl) du
S |
:2/ du+/ du—/ —du
V3 \/§qu \/gqul

[oron([E)] — o2 ()

5. Let f: E — R, E =]a, b[ an open interval. Assume that f is differentiable on E and that there
exists a positive real number C' > 0 such that |f'(x)| < C, Va € E. Show that f is Lipschitz.

Solution: By the Mean Value Theorem, Va,y € E, there exists ¢ €]z, y[ such that
f(@) = fly) = f'(¢)(x — y). Thus, as |f'(c)| < C, by assumption, then

[f(@) = f)l = 1f ()] - | =y < Cle —y.

6. Compute the following improper integrals

(a) ;™ ==

1 7\/@ dx

(b) Jo ™ ebeda

(c) O+O° (z3(8 4+ 2*)7%/3 4 22€%) dz
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Solution:

(a) We have
z 1 1
—dr =~ [ 20(2?45)2dr = ———— +¢
/\/(.1'2-1—5)3 2/ ( ) z2+5
And
i ( L\, ( L1 ) 1
im | —— =lm ([-————+—= | = —
t—+oo Va2 + 51, t—00 V215 \/6 \/6
(b) We have

t 1
/ %x(f)dm =- / arccot(x) arccot’ (z)dx = ~5 arccot?(z) + ¢

so the result is
2

. 1 2 1 2 1 200y —
t£+mw <—2 arccot”(t) + 3 arccot (0)> =3 arccot(0) = 3

(¢c) We can split by linearity this integral into the sum of two integral, the second can
be done integrating by part, the result is

) 3 1

3 4\—5/3 T T z

z°(8+x +2xe>dxf—f + 2xe* —2e* 4+ ¢
/( ( ) 8 /(8 + x1)2

Now we compute the limit

3 1 3
m (-2 42t —1)+ > 42| =
lm<83(8+t4)2+ e'( )+32+> +00

. Find a recursive formula for T,, = [ cos®"(z)dz Vn € N.

Solution: Using integration by parts and the relation sin®(z) = 1 — cos?(x) we get
T, = /cosgn(x)d:v
= /(1 —sin?(x)) cos® % (z)dx
= /0052"_2(a:)dx— /Sin2(a:) cos® % (z)dx

1
=T, 1+ S /sin(a:)(Qn — 1)(—sin(x)) cos*"%(z)dx
B sin(x) cos?™ 1 (z) 1 / o1
=Th1+ 51 S cos(z) cos (x)dx
T4 sin(x) cos?" 1 (z) T,

on — 1 -1
Hence, rearranging the equation, we get

2 =3 2n—1
n T —T, 4+ sin(z) cos (x)’
2n—1 2n—1
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which can then be disguised as

T - sin(x) cos?" 1 (z) n 2n — 1Tn71'
2n 2n

8. Find the radius and interval of convergence for each series.
(a) 5ty k2(75]i57ci294) (z+2)F
(b) Xilo sy (x +6)

() X0l wimee (@ — D

Solution:

Tk—22
(a) Let ap = m, then

— Ny~
I Y I, (7(k+1) — 22) - k*(55k + 94) _1
k—oo | ak k—oo (k+1)2(55(k 4+ 1) 4+ 94)(7k — 22)
So the radius of convergence is R = 1. If z = —1 or x = —3 the series is absolutely

convergent by comparison criterion because 0 < R Th—22__ < _T_ S the interval

(55k+94) = BBR2"
of convergence is [—3, —1].

(b) Let ap = (k%‘ls)“ then
1
= lim 0.

Qk+41 R _t
k—oo k+ 6

ag

lim

k—o0

So the radius of convergence is R = +00 and the interval of convergence is all of the
real line | — oo, +00].

(c) Let ar = %, then

- (k +1)2(k* + 3k?)
k—oo k((k+1)* + 3(k +1)2)

= 400.

ag

So the radius of convergence is R = 0 and the interval of convergence is {1} = [1, 1].

9. State if the following integrals converge or diverge.

o0 T
@) J; " e
(b) 0+°°xe’12dx
Solution:

% so by comparison the integral is

(a) Remark that when « > 7 we have ﬁ >
divergent.
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(b) We compute the integral
/Z a2 1 __» z 1 _, 1

re ¥ dr=—=e = e % 42

0 2° |, 2 2

. . — 2 .
Since lim,_, 1 o f%e s % = %, the integral converges.

10. For each of the following functions compute the Taylor series at 0, compute the radius of
convergence and show that the function equals its Taylor series.

Solution:

(a) We observe that (e®)’ = e*, so (e*)(™ = e* for all n > 0 and has value 1 at = = 0.
So the Taylor series of e* is ZZO:O %x" We compute the radius of convergence:
lim, o0 (n%'l), =lim, n%H = 0, so the Taylor series converges for all z € R. Let
Ja,b[ be an open interval containing 0. To prove that f(z) = e” equals its Taylor
series for x €]a, b[, we need to compute the limit

|z["

n
lim sup |f"(y)|~ = lim eb@ =’ lim T,
N0 yela,bl n: n—00 n! n—oo nl

which estimates the error of the (n — 1)-st order Taylor polynomial (remember that,
for a function of class C", the error for the (n — 1)-st Taylor polynomial is given

(
by ! n)(g)( — 20)", where zg is the center of the expansion, which is 0 in this case,
and £ is a suitable point between z and x).

But lim,, . |n| for all x € R because we just proved that the series Zn o 7},3:

converges for all x > 0. Then e® equals its Taylor series for x €]a, b| for all open
intervals ]a, b, and hence for all z € R.

(b) We recall that

sin(")(x){g_l) # cos(z) n odd

—1)% sin(x) n even
So the Taylor series of sin(z) at 0 is Y-, (2k+)1),1: 1 it converges for all z € R
because the radius of convergence is +00, as
(=1)**
I (2(k+1)+1)" ok 1
im ————— im — =
k—o0 (=1 k—o0 (2]6 + 3)(2k + 2)
(2k+1)!

To prove that f(z) = sin(x) equals its Taylor series for © € R, we use the fact
that all derivatives of sin(z) are bounded above in absolute value by the constant
function 1. So

lim sup\fw()\' " B

n—=00 R n~>oo n!
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11. Compute the Taylor series of the following functions at 0 and determine the radius of conver-
gence. (Hint: Recall the following Taylor series log(y) = Y pey (_1,);“ (y — 1)* and use the
uniqueness of the Taylor series.)

(a) f(z)=log(l+x)
(b) flo) = 11
©) f@) =

Solution:

a) Recall from the lecture that lo =Yy = iy — 1)* around 1 with radius
(a) Recall from the 1 hat log(y) = Y3, =H—(y
of convergence 1. So the equality holds for all y €]0,2[. Let z = y — 1 then for
k+1 k+1
€] —1,1[, we have log(1 + z) =logy = > ro; (_1,1 . (y—1)F =372 1 1) Tk,
The radius of convergence is the same, i.e. 1, because the coefficients of the power
series are the same.

(b) We observe that (log(1 + z))" = Hl_ So we can use the derivative of the Taylor
series of (log(1+x))" computed above to determine the Taylor series of 1-— around
0.

o0 o k+1 ! o0 o0
1—1—% = (log(1 +x)) = (Z (llzzk> = Z(—l)kﬂxk’l = Z(fl)kxk.

k=1 k=1 k=0
The radius of convergence remains equal to 1, because the function f is not defined

at —1.

/!
= (#) . By uniqueness of the Taylor series, the Taylor

11—z

(¢c) We observe that = m)2
series of ﬂ can be computed by substituting y = —z into the Taylor series of f
=Y e o(=Dk(—z)k =377, 2* at 0 with radius of convergence 1, and

e (Zm) Zk‘xk ! kzok—i—l)mk

with radius of convergence 1 because the function f is nor defined at 1.

12. Compute the following integrals using Taylor series. Your answer should be in the form of an
explicit numerical series, but you do not need to compute the sum of the series.

a) foé log(1 + 222)dx

) fol sin(x?)dx

Solution:

(a) By uniqueness of the Taylor series, the Taylor series of log(1 + 2z2) on the interval
] —1,1[ can be computed by substituting y = 222 into the Taylor series of log(1 +y)
computed in a previous exercise. So

s (71)k+1 0 k+12k
log(1 4 22?) = ZT Z z?

k=1 k=1
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and we can compute the integral termwise because [0, 3] €] — 1,1[:

1 1

3 o k:+12k 0 (_1)k+12k 2R+l |2
log(1 4 22?) g / e dr =

/ 0 2w,

0 k=1 k=1

o0 k+1 1

(b) By uniqueness of the Taylor series, the Taylor series of sin(z3) can be computed by
substituting y = 22 into the Taylor series of sin(y) computed in a previous exercise.

k
So sin(z?) = Y07, (g;}r)l)!x?’(%*l), and we can compute the integral termwise:

[ sntayar =y LU / jorsig_ 30 CUE 1
0 2k+1 k=0(2k+1)!6k+4'

k:O

13. Compute the following improper integrals

f \/ﬂ(zzﬂ)d

+oo  9r48
®) Jo ($+2)(;2+1)dx

Solution:

(a) Making the change of variables u = /22 (hence u? = 2z, because x > 0, and
udu = dz) we get

uz+1

hence we have to compute the following

1
/ ———du = arctan(u) + ¢

lim (arctan(\/ft) - arctan(l)) =

™ ™ ™

(b) Write
9z + 8 A +Bx+C
(x+2)(224+1) z+2 22+1°

We get A=—-2, B=2and C' =5, so

9z + 8 2 +1
/({L’—i—2>($2—i—1)dm = log ((J,‘—‘,—Q)Q> + 5arctan(x) +c

so the final result is

2 +1 1
tlgglo <10g ((t++2)2> —log <4> + 5arctan(t) — arctan(O)) = log(1) + log(4) + 5% —

)
=57 + log(4).

14. Find the radius and interval of convergence for each series.

(a) Ya—on(z —5)"
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(b) oo (1+3)" (@+3)"
(c) 322 2lam (without checking the boundary points)

n=0 nm

Solution:

(a) Define a,, = n. We know that if lim,,_,c |@nt1/an| = L then the radius of conver-
gence is R =1/L. We have

CLn+1
Qn

. o n—+1
= lim =

n—oo N

lim 1.
n—oo

So the radius of convergence is R = 1 and the convergence interval is T' =]4, 6[. Note
that we removed the boundaries 4 and 6 since the power series will be divergent for
x =4 and x = 6, since the sequences n and (—1)"n do not converge to 0, as so their
series cannot possibly converge.

(b) Define a,, = (1 + %)n We know that if lim,, |an|1/" = L then the radius of
convergence is R = 1/L. We have

1 ny\ 1/n
((+3))

n
So the radius of convergence is R = 1 and the interval of convergence is I =] —4, —2]
and the boundaries of the interval are excluded because the series will be divergent
for x = —4 and ¢ = —2. Indeed, if £ = —2, we consider ZZO:O (1 + %)n7 and if
x = —4, we consider Yo" ((=1)" (1 + %)n7 and in both cases the sequence we are
taking the series of does not converge to 0.

. ) 1
lim = lim |1+ —|=1.
n—oo n

n—roo

(c) Define a,, = 2. We have

n

a (n+1)! 1 n n
n . n n+l .
lim 1= lim % = lim (n+1)- .
e n—oo 7% n— oo n—+1 n+1
1 1
= lim ———=-=1,

so the radius of convergence is R = % =e.

15. State if the following integrals converge or diverge. Motivate your answer.

(a) f1+00 logldz

£C2
400
(b) \/11+7zdx.
Solution:

(a) We compute the truncated integral by parts:

#1 1 ? 1 1 1
/ og;vdg::iog:r Jr/ —de:ngszJrl.
1 x x 1 1 X z

z
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lofz = 0 by L’Hopital, we have

/mlogxdxz T
1

2 ztoo 2 z

Since lim,_, 4 o

So the integral converges.
(b) We observe that a primitive of (1 +x)~'/2is 2(1 + 2)'/2, so
+o0 =
[Tt A, | gt 2P -2 ke

and the integral diverges.

16. For each of the following functions compute the Taylor series at 0, compute the radius of
convergence and show that the function equals its Taylor series.

(a) cos(z)
(b) sinh(x)

Solution:

(a) For the function cos(z) it suffices to recall that it is the derivative of the function
sin(x), that we can compute derivatives of converging power series termwise, so the
uniqueness of the derivative gives

oo _ k /
cos(z) = (sin(z))" = <Z (2(1531)[1"2“1) _

k=0

[~]e
— .

| |
| =
S— | —
- =

8
[\)
ES

k=0

for all z € R. By uniqueness of the Taylor series, this power series is the Taylor
series of cos(zx).

(b) We recall that
cosh(z) n odd

sinh(z) n even.

(sinh(z))™ = {

So the Taylor series of sinh(z) at 0is Y=, mgs%"‘l and converges for all z € R

1
because limy_, o, CEEEUL — (). Let a > 0. To prove that f(x) = sinh(z) equals its
(e

Taylor series for « €] — a, a[, we compute the limit

lim sup |f(”)(y)|@ < lim cosh(a)@ = cosh(a) lim Jal* =0.
n!

| |
n— oo y€]—a,a[ n— 00 n! n—oo nN!

In the computation, we used that the n-th derivative is either cosh or sinh, but
cosh(t) > sinh(¢) for all ¢, so we can estimate any derivative (regardless of n even
or odd) with cosh. Since it holds for all intervals | — a, a[, then sinh(x) equals its
Taylor series for all x € R.

17. Compute the Taylor series of the following functions at 0 and determine the radius of conver-
gence.
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Solution:

6 1-2
pute the Taylor series by substituting y =
computed above. So

0o k 00 k
15 15 4 15 /4
6 — 8z (SE;( ) < 3x) 6 (3> *

¥/15
6

_ 4

k : .
(3)" = 3, the radius of convergence is 3.

Since limy 4 o0 1

of e¥ we get

k=0 k=1 k=0

of convergence we need to compute the limit

Co2.gktl sogkNTh oy
kILI&(k+1)!< k! ) =i o

So the radius of convergence is co.

(c) We observe that arccot z is a primitive of the function T +m2

Taylor series, we can compute the Taylor series of by substituting y

1+:62
the Taylor series of m at 0. So

oo oo

_14,_#3;2 - _ Z(_l)kx% _ Z(_l)kJrlx%

k=0 k=0

of arccot x as a formal integral

o0 (o)
arccot x = /Z(—l)k+1x2kda€+arccot ; 2k 1 2]“Jrl—&—aurccot 0=

with the same radius of convergence, i.e. R =1.

(a) We observe that L = ﬁ#. By uniqueness of the Taylor series, we can com-
37T

32 in the Taylor series of 17— ; at 0

(b) We observe that 2ze*” = i(e“ﬂ)’. So by substituting y = 422 in the Taylor series

! !/
a2 1 S (4z%)k . N 4kt 2%\ o~ 24k 2%—1 _ o 2-4F 2%k+1
2e w(z wo) S\ ) i T
=0

It is the Taylor series of 2z¢ie” by uniqueness of the Taylor series. For the radius

By uniqueness of the

=22 in

at 0 with radius of convergence v/1 = 1. We are ready to compute the Taylor series

V]
4
N

2k +1

18. Compute the following integrals using Taylor series. Your answer should be in the form of an

explicit numerical series, but you do not need to compute the sum of the series.

(a) f0§ 14_%dx

(b) fy cosh(y/T)dz
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20.

(c) fol rtsin(2?®)dx

Solution:

(a) By uniqueness of the Taylor series, the Taylor series of ﬁ on the interval | — 1,1]
can be computed by substituting y = x> into the Taylor series of ﬁ computed

above. So 1+I3 => o= 1)*23% and

/é ! ——dx = i(fl)k /é 2 dr = i 7(_1)k
o 1+a° k=0 0 =3Bk + 1)

(b) The Taylor series of cosh(y) can be computed as derivative of the Taylor series of

sinh(y), which was computed on an exercise above. So cosh(y) = (Zk 0 (2k+1)' Y2kt 1)
Z;ozo ﬁy%. By uniqueness of the Taylor series, the Taylor series of cosh(y/z) on
[0, +00[ can be computed by substituting y = 1/ in the Taylor series of cosh(y). So
cosh(v/z) = Y 10, ﬁxk, and

1

/Ocosh zz: 2%)! / kdx:kzzom.

(c) We recall that in a previous exercise we computed the Taylor series sin(z3) =
(=D"* 6k+7

oo (%1) ;2083 Then a*sin(z®) = Y77, BT and
0 k:() 2k:+ 1)! —~ (2k +1)!(6k + 8)

Review Exercises

19. (Multiple Choice Question) The integral ff z2logx dx is

(a) §log(2) + §
(b) §log(2) - §
(c) 8log(2) - §
(d) 8log(2) + I

Solution: (b) is correct. We use integration by parts to get

2 3 23
T 1 8 7
/1 r?logx dr = Elogxﬁ —/1 33 dx = glogxh — —|1 =3 log(2) — g

(Multiple Choice Question) The integral

/3/” sin (%) d
T
2

fr P

is
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o
Nar NG N N
‘ ‘S N |—=
N
N[ @
5

(@) 4
Solution: (a) is correct. Take u = 1 then dz = — L du so
3/m i (L w/3 1 /3 1
/ s (2”) dzx = / u? sin(u)(——) du = —/ sin(u) du = cos(u) :;g =—.
2/m € /2 u /2 2

21. The integral

1
/ z2e® dx
0

(a) e

(b) 2—e
(c) e+2
(d) e—2

Solution: (d) is correct. We use integration by parts twice:

1 1 1
/ z2e” dr = (2%e”)|} —/ 2ze” dr = (z2e)|§ — 2 ((mew)hl) - / e’ dx)
0 0 0

= (a%e")]p — 2 ((ze™)]p — €[p) = e — 2.

22. For each of the following sequences defined by recursion, show the convergence and find the
limit lim, o0 Gy .

(a) apt1 = éi—g:, ap = 1.

— 1.2 1 _3
(b) ng1 =14 3a; — 5a,, ao=3.

Solution:

(a) First we notice that if the sequence (a,) is convergent then its limit lim, o a, = a

must satisfy the relation:
_1+a

a—2+a.

Assuming that a # —2, the relation above is equivalent to the relation

a?+a—-1=0
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Which has the solutions %\/g Now we show by induction that 0 is a lower bound
for the sequence. We notice that ag = 1 > 0 so the base of induction hold. Now we

assume that a,, > 0 then we have a,11 = ;i—zn > 0. So by induction all a, > 0.

So the only possible limit for the sequence is ’1%‘/5 Now we have to check if the
sequence is convergent or not. To show this, we use the fact that monotone and
bounded sequences are convergent. We showed that the sequence is bounded below
by zero, we just need to show that the sequence is monotone decreasing. Define the
difference sequence:
dn =0anp — ap-1

we have to show that d,, < 0 for all n for monotonicity of (a,). We use induction.
For the base of induction we have dy = a; —ag = 2/3 — 1 = —1/3. Now suppose
that d,, = a,, — an_1 < 0, then we have:

1+ G 1+ Gp—1 Gp — Anp—1 dn

_ = <|0
24an, 2+4an—1 (24+a)24an—1) (24+an)24an—1)
So by induction, all d,, < 0 meaning that (a,) is a monotone decreasing sequence.

By putting everything together, (a,) is a convergent sequence and it converges to
—1+v5
2

dn+1 = Qp+4+1—Aap =

If the limit @ = lim a, exists, it satisfies the equation
n—oo
1 1
=1+ -a®>-= 1
a + 2a 2a7 (1)
This equation is equivalent to
a>—3a+2=(a—-1)(a—2)=0,

Soa=1ora=2.

We have
g L3y L3 _ L 9 3 11 12 3
279\ 2 22 "8 4 8 8 2 v

We show by induction that 1 is a lower bound for the sequence (a,). We have

3
ap = 5 2 ]-7
and if a,_1 > 1, it follows that
1 1 1
an, =1+ 50,727471 - §an71 =1+ 5an71 (anfl - ]-) >1.

We show by induction that the sequence is monotone decreasing. We already showed
that as < aj .
Suppose that a, < a,_1. Since 1 is a lower bound for the sequence, we obtain
Ogan_lganfl_lv
and so
an(an - 1) < an—l(an—l - 1)a
since 0 < ap < ap—1 (here it is important all quantities are positive to preserve
inequalities). Finally, we have
1 1 1 1
ni1 =14+ 5(1% — §an =1+ ian(an -1<1+4 gan,l(an,l -1 =a,.

The sequence (ap,)n>1 is bounded and monotone decreasing. So it is convergent and
the limit is ¢ = lim a, = 1.
n—oo
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23. True/False If the statement is true, you should prove it. If the statement is false, you should
provide a counterexample.
(a) If (a,) C R is a Cauchy sequence, then (a?2) is also a Cauchy sequence.

(b) If (a2) is a Cauchy sequence then (a,) is also a Cauchy sequence.

Solution:

(a) True.

Solution 1: Since (a,) is Cauchy, it is convergent. Since the product of two
convergent sequences is convergent the sequence (ai) is convergent and therefore is
Cauchy.

Solution 2: Using the definition of a Cauchy sequence for (a?), we must show

that for a given € > 0, we can find N € N such that for all m,n > N we have
a7 —azl <e.
To show this we note that (a,) is Cauchy and so is convergent and bounded. Now

let € > 0 be given and define M = max{a,}52;. Since (a,) is Cauchy, we can find
N such that |a,, —an| < €/(2M) for all m,n > N. We now have

€
la2, — aZ| = |am + an||am — an| < 2M|am, — a,| §2M~% =€

for all m,n > N. This shows that (a?) is a Cauchy sequence.

(b) False. The inverse statement is not necessarily true! For example let a,, = (—1)™ and
so a2 = 1. (a2) is a constant sequence, therefore it is convergent and so a Cauchy
sequence, on the other hand (a,) does not converge, and so it cannot possibly be a

Cauchy sequence.

24. Check the convergence of the following series.

00 npsin’n

(b Zn:l n3+1

ZOO n+1
n=1 n24+2n+3

)
)
)
(@) X,
&) Yo, S
)
)
)
)

n(y/n+1
£ Zle\/%
3

8) 2n=1 logm)m
[e%s) —5)"
h) >y 4271(+17(ZL+1)

. 4" (n!)?
(i 220:1 ﬁ

Solution:

—n

a) We use the comparison test. Notice that 0 < &5 < L. And since 2%, L is
n n n=1n

o
convergent, then Y | < is also convergent.
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(b) We use the comparison test. Notice that 0 < ”Sfjfl" < < 24>, And since
> oo, & is convergent, then Y7 ";;,11" is also convergent.
(¢c) We have
n+1 n+1 - n+1 1

> = =
n2+2n+3 " n24+4n+3 (n+1(”n+3) n+3

and Y7, ni?’ is the harmonic series (just shifted in the indexes) and is divergent.

(d) This is a geometric series and is convergent since 0 < e™! < 1.

(e) We use the Leibniz criterion. Define a,, = \/371?1 Then (a,,) is monotone decreasing

(-
V3n—1

and converges to 0, so > 7, is convergent.

(f) Note that
n(y/i+ 1)

Iim ——~2— =

n—oo \/p3 4+ 2n2 — 1

So this series is not convergent.

(g) We use the ratio test. Define the sequence a,, = W We have
1) L a1 1
n+1
lim%:hm%:liml 3.n3 =1 3<1,
n—oo | G n—o0o Tog 3™ n—oo log n og
as 3 > e. So the series is convergent.
(h) We use the ratio test. Define the sequence a,, = 4%,(;175()7;1). We have
_5)yntl
PEE= T o 1 1 5
e iz’ S TP il TR S TV T B k) P
n—oo | Gy n— 00 (=5) n—oo 42 n +2 16
42n+1(n+1)
So the series is convergent.
(i) We use the ration test. Define the sequence a,, = 4&%;? We have
4" (n4 1))
lim |7 = im0~ fim 4 (0 1) = co.
n—oo A, n—o0 (n!) n—oo n+ 2
(n+2)!

The series is divergent.

25. True/False. If the statement is true, you should prove it. If the statement is false, you should
provide a counterexample. Let (a,) and (b,) be numerical sequences.

(a) If hm |an| = a, then limsup a,, = a and liminf a,, = —a.
n—oo n—0o0
(b) If limsup |a,| = 0, then (a,) converges to zero.

(¢) If imsup a,, = 0, then a,, <0 for all n € N.

n—oo

)
) n—00
)
)

(d) If limsupa, = hm 1nfb =0, then limsup(a, — b,) = 0.

n—oo n—o0
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Solution:

(a) False. Take for example the constant sequence a,, = 1 for all n € N. Then 1 =

lim |a,| = limsup a,, = liminf a,,.
n—o00 n—oco n—o00

(b) True. Since 0 < liminf|a,| < limsup |a,|, we have liminf |a,| = limsup |a,| = 0.
n—0o0 n— oo n—oo n— oo
So lim |a,| =0 and (a,) converges to zero too.
n— o0

(c) False. Take for example a,, =

and so limsupa, = 0.
n—oo

> 0 for all n € N*. Thensup{1 L ...}:l

1 1 1
n n’nt+l?

(d) False. Take for example a,, = (—1)"—1and b,, = (—1)"+1. Then sup{an, ant1,...} =
sup {0, —2} = 0 and inf{b,,, byy11, ... } = inf{2,0} = 0 for all n € N, but a,,—b,, = —2
for all n € N.

26. Check if the limit of the following sequences exist.
=n"

an = n+1

ap = (=1)" + (=1)"*+?
a, = sinnm + cosnmw

Ap = 2(—1)“ + nil

Solution:

(a) Note that this sequence converges to 0.

(b) We see that a,, = —2 if n is odd and a,, = 2 if n is even. So lim, _,~ a, does not
exist.

(¢c) We have

1 ifn=4korn=4k+1
Qp = )
-1 ifn=4k+2o0orn=4k+3
so lim,, . a,, does not exist.
n

n41’
hence it converges to —1. We conclude that lim,, , a, does

(d) The subsequence as,, is equal to 2+

1
n+1’

so it converges to 3; the subsequence agy,+1
is equal to —2 +
not exist.
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