

Analysis 1 - Exercise Set 13

Remember to check the correctness of your solutions whenever possible.

To solve the exercises you can use only the material you learned in the course.

- 1. State on which closed intervals the following functions are integrable and compute the antiderivatives.
 - (a) $f(x) = e^x$;
 - (b) $f(x) = \sinh(x)$;
 - (c) $f(x) = (ax + b)^s$ with $s \in \mathbb{Z}$ and $a, b \in \mathbb{R} \setminus \{0\}$;
 - (d) $f(x) = \cos(x)^3;$

(e)
$$f(x) = \begin{cases} 1 & x = 0, \\ 0 & x \neq 0; \end{cases}$$

(f)
$$f(x) = \cot(x), \cot(x) := \frac{\cos(x)}{\sin(x)}$$

(g)
$$f(x) = |x|^s$$
, $s > 0$.

Solution:

- (a) The function is continuous on \mathbb{R} hence it is integrable on every closed interval. The antiderivative is $F(x) = e^x + c$.
- (b) The function is continuous on \mathbb{R} hence it is integrable on every closed interval. We compute the antiderivative formally as follows:

$$F(x) = \int \frac{e^x - e^{-x}}{2} dx = \frac{e^x + e^{-x}}{2} + c = \cosh(x) + c$$

where c is the constant of integration.

(c) If $s \ge 0$ the function is continuous on $\mathbb R$ hence it is integrable on every closed interval. If $s \le -1$ the function is continuous and hence integrable on every closed interval contained in $\mathbb R \setminus \{-\frac{b}{a}\}$. We compute the antiderivative formally as follows: if $s \ne -1$ then

$$F(x) = \int (ax+b)^s dx = \frac{1}{a} \int a(ax+b)^s dx = \frac{1}{a(s+1)} (ax+b)^{s+1} + c.$$

If s = -1, we make the substitution u = ax + b so $x = \frac{1}{a}(u - b)$ with derivative $\frac{1}{a}$

$$\int (ax+b)^{-1}dx = \int \frac{u^{-1}}{a}du = \frac{1}{a}\log|u| + c = \frac{1}{a}\log|ax+b| + c.$$

(d) The function is continuous on \mathbb{R} hence it is integrable on every closed interval. We have two possible strategies. The first one consists in writing $\cos^3(x) = \cos(x)(1-x)$

We have two possible strategies. The first one consists in writing $\cos^3(x) = \cos(x)(1-\sin^2(x))$, so that the integral becomes

$$\int \cos(x) \, dx - \int \sin^2(x) \cos(x) \, dx,$$

where the first integral can be computed directly, while for the second one we set $u(x) = \sin(x)$ and $u'(x) = \cos(x)$. Then, we get

$$\int \cos(x) \, dx - \int \sin^2(x) \cos(x) \, dx = \sin(x) - \int u^2(x) u'(x) \, dx$$
$$= \sin(x) - \frac{1}{3} u^3(x) + c$$
$$= \sin(x) - \frac{\sin^3(x)}{3} + c.$$

Alternatively, we use integration by parts with $g(x) = \cos(x)^2$ and $h(x) = \sin(x)$, so that $g'(x) = -2\cos(x)\sin(x)$ and $h'(x) = \cos(x)$

$$\int \cos(x)^3 dx = \int gh' dx = gh - \int g'h dx = \cos(x)^2 \sin(x) + 2 \int \cos(x) \sin(x)^2 dx$$
$$= \cos(x)^2 \sin(x) + 2 \int \cos(x)(1 - \cos(x)^2) dx = \cos(x)^2 \sin(x) + 2 \sin(x) - 2 \int \cos(x)^3 dx$$

We use the equation

$$\int \cos(x)^3 dx = \cos(x)^2 \sin(x) + 2\sin(x) - 2 \int \cos(x)^3 dx$$

to solve for $\int \cos(x)^3 dx$, and we get

$$F(x) = \frac{1}{3}(\sin(x)(2+\cos^2(x))) + c.$$

Notice that the two answers are the same, we just need to rewrite $\cos^2(x) = 1 - \sin^2(x)$ to go from the second answer to the first answer.

(e) Since f is continuous everywhere except at x=0, f is clearly integrable on any closed interval not containing 0. We claim that f is also integrable on intervals containing 0. Let I=[a,b] be such interval, and let σ_n be the even partition of I into n subintervals. Notice that 0 belongs to at least one of these sub-intervals, and to at most two of these sub-intervals (this only happens if 0 is the right-end point of a sub-interval that is not the last sub-interval, so that it is also the left-end point of the subsequent one). Notice that, on every sub-interval, the infimum of f is 0, as the function is identically 0 except at 0, where it is strictly positive. To conclude, we need to show that the upper sums converge to 0. If I_i is a sub-interval and $0 \notin I_i$, then the supremum of f on I_i is 0. So, we only need to consider the sub-intervals containing 0. There, the supremum is 1, as f(0) = 1. Then, each such sub-interval would contribute with $1 \cdot \frac{b-a}{n}$. Since there are at most 2 such sub-intervals, the upper sum is bounded above by $\frac{2(b-a)}{n}$. As b and a are fixed, this quantity converges to 0 as $n \to +\infty$. So, f is integrable on every closed interval.

There is no antiderivative because if there was it would be $g(x) = \int_0^x f(t)dt + C = C$ and $g'(x) = 0 \quad \forall x \in \mathbb{R}$. Hence, $g'(0) \neq f(0)$.

(f) One can quickly verify that $g(x) = \ln|\sin(x)| + C$ is an antiderivative. This can be seen from $\cot(x) = \frac{(\sin(x))'}{\sin(x)}$. $\cot(x)$ is also continuous on the intervals $S_i = (k\pi, (k+1)\pi)$ and therefore integrable in any interval contained in any of the sets S_i . We will show that it is not integrable at any interval containing the endpoints of S_i . By symmetry it suffices to consider $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$. On $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ we have $\cos(x) > \frac{1}{2}$. We also know $|\sin(x)| \leq x$.

Let $\Pi = \{\pi_1, \dots, \pi_n\}$ be a partition of $[-\frac{\pi}{4}, \frac{\pi}{4}]$. There will be at least one of the intervals in Π containing 0. Call it π_i . Then $\sup_{x \in \pi_i} \cot(x) = +\infty$ and $\inf_{x \in \pi_i} = -\infty$ which shows that the Darboux sums do not converge. Hence, $\cot(x)$ is not Riemann integrable in an interval containing a discontinuity of $\cot(x)$.

- (g) Since s>0, the function is continuous on $\mathbb R$ hence it is integrable on every closed interval. Moreover, we know that the derivative of the function $g\colon \mathbb R_+^*\to \mathbb R$, $g(x):=x^t,\ t\in \mathbb R$ is $g'(t)=tx^{t-1}$. Hence, an antiderivative of f is given by $G(x)=\frac{\operatorname{sgn}(x)}{s+1}|x|^{s+1}$.
- 2. Determine the number c that satisfies the Mean Value Theorem for Integrals for the function $f(x) = x^2 + 3x + 2$ on the interval [1, 4].

Solution: First let's notice that the function is a polynomial and so is continuous on the given interval. This means that we can use the Mean Value Theorem. We have

$$\int_{1}^{4} x^{2} + 3x + 2 dx = (c^{2} + 3c + 2)(4 - 1)$$

$$\Rightarrow (\frac{1}{3}x^{3} + \frac{3}{2}x^{2} + 2x) \Big|_{1}^{4} = 3(c^{2} + 3c + 2)$$

$$\Rightarrow \frac{99}{2} = 3c^{2} + 9c + 6$$

$$\Rightarrow 0 = 3c^{2} + 9c - \frac{87}{2}$$

This equation has the two solutions $c_1 = (-3 + \sqrt{67})/2$ and $c_2 = (-3 - \sqrt{67})/2$. Clearly the second number is not in the interval [1, 4] so c_1 is the acceptable value. Note that it is possible for both numbers to be in the interval so don't expect only one to be in the interval.

3. Let

$$f(x) = \begin{cases} \sin(x) & 0 \le x \le \frac{\pi}{2} \\ 1 & \frac{\pi}{2} \le x \le 3 \end{cases}$$

Compute $\int_0^3 f(x)dx$.

Solution:

$$\int_0^3 f(x) dx = \int_0^{\frac{\pi}{2}} f(x) dx + \int_{\frac{\pi}{2}}^3 f(x) dx = \int_0^{\frac{\pi}{2}} \sin(x) dx + \int_{\frac{\pi}{2}}^3 1 dx = 1 + \left(3 - \frac{\pi}{2}\right).$$

- 4. **True/False:** If the statement is true you should prove it. If it is false you should give a counterexample. Let F be an anti-derivative of f on [a, b].
 - (a) If $f(x) \leq 0$ for all $x \in [a, b]$, then $F(x) \leq 0$ for all $x \in [a, b]$.
 - (b) For all $x \in [a, b]$, we have $F(x) = \int_a^x f(t) dt$.

Solution:

- (a) False. Take for example f(x)=x on the interval [-2,-1]. Then $f(x)\leq 0$ on [-2,-1] but $F(x)=\frac{1}{2}x^2>0$ For all $x\in [-2,-1]$.
- (b) False. Consider for example the constant function f(x) = 1 on the interval [0,1]. Then F(x) = x + 1 is an anti-derivative of f but

$$\int_0^x f(t) dt = \int_0^x dt = x - 0 = x \neq x + 1 = F(x).$$

Indeed, remember that, once we know there is one anti-derivative, then there are infinitely many (we may add any constant!).

- 5. Show that:
 - (a) if $f: [-a, a] \to \mathbb{R}$ is an integrable odd function then $\int_{-a}^{a} f(x) dx = 0$;
 - (b) if $f:[-a,a]\to\mathbb{R}$ is an integrable even function then $\int_{-a}^a f(x)dx=2\int_0^a f(x)dx$.

Solution:

(a) Using Algebra of Integrals we see

$$\int_{-a}^{a} f(x)dx = \int_{0}^{a} f(x)dx + \int_{-a}^{0} f(x)dx$$

$$= \int_{0}^{a} f(x)dx - \int_{a}^{0} f(-t)dt$$

$$= \int_{0}^{a} f(x)dx + \int_{a}^{0} f(t)dt$$

$$= \int_{0}^{a} f(x)dx - \int_{0}^{a} f(t)dt = 0,$$

where in the second line we make the change of variable t = -x and dt = -dx, in the third line we use that f is odd to get f(-t) = -f(t), and in the last step we flip sign by swapping the extrema of integration.

(b) Using Algebra of Integrals we see

$$\int_{-a}^{a} f(x)dx = \int_{0}^{a} f(x)dx + \int_{-a}^{0} f(x)dx$$

$$= \int_{0}^{a} f(x)dx - \int_{a}^{0} f(-t)dt$$

$$= \int_{0}^{a} f(x)dx - \int_{a}^{0} f(t)dt$$

$$= \int_{0}^{a} f(x)dx + \int_{0}^{a} f(t)dt = 2\int_{0}^{a} f(x)dx,$$

where in the second line we make the change of variable t = -x and dt = -dx, in the third line we use that f is even to get f(-t) = f(t), and in the last step we flip sign by swapping the extrema of integration.

- 6. Calculate the following formal integrals.
 - (a) $\int \sin(x)^2 dx$
 - (b) $\int \arcsin(x) dx$
 - (c) $\int \frac{\sinh(x)}{e^x+1} dx$
 - (d) $\int e^{ax} \cos(bx) dx$ $(a \neq 0)$, (Hint: apply integration by parts multiple times until you see a pattern.)

Solution:

(a) We apply integration by parts with $f = \sin(x)$, $g = -\cos(x)$ and $f' = \cos(x)$, $g' = \sin(x)$.

$$\int \sin(x)^2 dx = -\sin(x)\cos(x) + \int \cos(x)^2 dx$$
$$= -\sin(x)\cos(x) + \int 1 - \sin(x)^2 dx = -\sin(x)\cos(x) + x - \int \sin(x)^2 dx.$$

From the equation we just obtained we get $\int \sin(x)^2 dx = \frac{1}{2}(x - \sin(x)\cos(x)) + C$.

(b) We apply integration by parts. Take f'(x)=1 so f(x)=x and $g(x)=\arcsin x$ so $g'(x)=\frac{1}{\sqrt{1-x^2}}.$ We get

$$\int \arcsin x \ dx = \int 1 \cdot \arcsin x \ dx = x \cdot \arcsin x - \int x \cdot \frac{1}{\sqrt{1 - x^2} \ dx}$$

To figure out the last integral we notice that if we define $u(x) = (1 - x^2)$ then u'(x) = -2x. So we can write

$$\int x \cdot \frac{1}{\sqrt{1-x^2}} dx = -\frac{1}{2} \int (-2x)(1-x^2)^{-1/2} dx = -\frac{1}{2} \int u'(x)u(x)^{-1/2} dx$$
$$= -u(x)^{1/2} + C = -(1-x^2)^{1/2} + C = -\sqrt{1-x^2} + C.$$

Now combine everything together and write:

$$\int \arcsin x \ dx = x \cdot \arcsin x - \int x \cdot \frac{1}{\sqrt{1 - x^2}} \ dx = x \cdot \arcsin x + \sqrt{1 - x^2} + C.$$

(c) We use the definition of sinh:

$$\int \frac{\sinh(x)}{e^x + 1} dx = \frac{1}{2} \int \frac{e^x - e^{-x}}{e^x + 1} dx = \frac{1}{2} \int \frac{1 - (e^{-x})^2}{1 + e^{-x}} dx$$
$$= \frac{1}{2} \int (1 - e^{-x}) dx = \frac{1}{2} (x + e^{-x}) + C.$$

(d) We apply integration by parts twice. Let
$$I_{a,b} = \int e^{ax} \cos(bx) dx$$
. We take $f'(x) = e^{ax} \ [\Rightarrow f(x) = \frac{1}{a} e^{ax}]$ and also $g(x) = \cos(bx) \ [\Rightarrow g'(x) = -b \sin(bx)]$ we get

$$I_{a,b} = \frac{1}{a} e^{ax} \cos(bx) + \frac{b}{a} \int e^{ax} \sin(bx) dx.$$

We apply integration by parts one more time on the last integral. Take $f'(x) = e^{ax}$ and $g(x) = \sin(bx)$ [$\Rightarrow g'(x) = b\cos(bx)$]

$$\int e^{ax} \sin(bx) dx = \frac{1}{a} e^{ax} \sin(bx) - \frac{b}{a} \int e^{ax} \cos(bx) dx.$$

Note that we recovered $I_{a,b}$ again in last integral. So we can combine the two equations and compute $I_{a,b}$ as follows:

$$I_{a,b} = \frac{1}{a} e^{ax} \cos(bx) + \frac{b}{a} \left(\frac{1}{a} e^{ax} \sin(bx) - \frac{b}{a} I_{a,b} \right)$$

$$\Leftrightarrow \left(1 + \frac{b^2}{a^2} \right) I_{a,b} = \frac{e^{ax}}{a} \left(\cos(bx) + \frac{b}{a} \sin(bx) \right)$$

$$\Leftrightarrow I_{a,b} = \frac{e^{ax}}{a^2 + b^2} \left(a \cos(bx) + b \sin(bx) \right) + C.$$

7. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function with a period T > 0. Let F be defined by

$$F(x) = \int_{0}^{x} f(t) dt.$$

Show that F is periodic with period T if and only if

$$\int_{0}^{T} f(t) dt = 0.$$

Solution: We first assume F is periodic with period T, and then show this implies $\int_0^T f(t) dt = 0$. This is easy, we just insert the definition of F

$$0 = F(T) - F(0) = \int_0^T f(t) dt - \int_0^0 f(t) dt = \int_0^T f(t) dt.$$

Now we must show that $\int_0^T f(t) dt = 0$ implies that F is periodic i.e. F(x+T) - F(x) = 0 for all $x \in \mathbb{R}$. Fix one $x \in \mathbb{R}$. We can use the definition of F to write

$$F(x+T) - F(x) = \int_0^{x+T} f(t) \ dt - \int_0^x f(t) \ dt = \int_x^{x+T} f(t) \ dt = \int_x^{x+T} f(t) \ dt.$$

In the last equality, we used the fact that the integral of a periodic function with period T is always the same on any interval of length T; we will prove this claim below. But by the assumption $\int_0^T f(t) dt = 0$. So F(x+T) - F(x) = 0.

So, we are left to show that the integral of a periodic function with period T is always the same on any interval of length T. Said otherwise, we need to show that

$$\int_0^T f(s)ds = \int_x^{x+T} f(t)dt$$

for every $x \in \mathbb{R}$. First, we consider

$$k = \sup\{m \in \mathbb{Z} | mT < x + T\},\$$

which exists, as the set is non-empty (e.g., take m very negative so that mT < x) and bounded above (e.g., bounded above by |x|/T+1). Then, we use the change of variable s=t-kT, and we get

$$\int_{x}^{x+T} f(t)dt = \int_{x-kT}^{x+T-kT} f(s+kT)ds = \int_{x-kT}^{x+T-kT} f(s)ds,$$

where in the last equality we used that f(s) = f(s+kT), by the T-periodicity. Now, by the definition of k, we have x+T-kT>0 and $x-kT=x+T-(k+1)T\leq 0$. So, if we define y=x-kT, we have $y\leq 0$ and $0< y+T\leq T$. So, we have

$$\int_{x-kT}^{x+T-kT} f(s)ds = \int_{y}^{y+T} f(s)ds = \int_{y}^{0} f(s)ds + \int_{0}^{y+T} f(s)ds.$$
 (1)

Now, on the first summand, we make the change of variable u = s + T. So, we have

$$\int_{y}^{0} f(s)ds = \int_{y+T}^{T} f(u-T)du = \int_{y+T}^{T} f(u)du,$$

where in the second equality we used that f(u) = f(u - T). If we substitute it back in (1), we get

$$\int_{x-kT}^{x+T-kT} f(s) ds = \int_{y}^{0} f(s) ds + \int_{0}^{y+T} f(s) ds = \int_{y+T}^{T} f(s) ds + \int_{0}^{y+T} f(s) ds = \int_{0}^{T} f(s) ds,$$

where we used that the variable of integration is just a dummy variable, so we can change the letter we used.

- 8. Calculate the following integrals.
 - (a) $\int_{\pi^2/16}^{\pi^2/9} \cos(\sqrt{x}) dx$
 - (b) $\int_0^{\pi^{1/2017}} \sin(\sin(x^{2017})) \cos(x^{2017}) x^{2016} dx$

Solution:

(a) We change the variable using $u=\sqrt{x}$ which gives $x=u^2$ and $dx=2u\ du$. Note that $u(\pi^2/16)=\pi/4$ and $u(\pi^2/9)=\pi/3$. We have

$$\int_{\pi^2/16}^{\pi^2/9} \cos(\sqrt{x}) \, dx = 2 \int_{\pi/4}^{\pi/3} u \cos(u) \, du \stackrel{(*)}{=} 2 \Big[u \sin(u) \Big]_{\pi/4}^{\pi/3} - 2 \int_{\pi/4}^{\pi/3} \sin(u) \, du$$
$$= 2 \Big[u \sin(u) + \cos(u) \Big]_{\pi/4}^{\pi/3} = 1 - \sqrt{2} - \frac{\pi\sqrt{2}}{4} + \frac{\pi\sqrt{3}}{3} .$$

For (*) we used integration by parts by taking $f'(u) = \cos(u)$, g(u) = u.

(b) We change the variable with $u = x^{2017}$ which gives $du = 2017x^{2016}$ dx. Note that u(0) = 0 and $u(\pi^{1/2017}) = \pi$. We get

$$\begin{split} \int_0^{\pi^{1/2017}} \sin(\sin(x^{2017})) \, \cos(x^{2017}) \, x^{2016} \, dx &= \frac{1}{2017} \int_0^{\pi} \sin(\sin(u)) \cos(u) \, du \\ &= \frac{1}{2017} \Big[- \cos(\sin(u)) \Big]_0^{\pi} \quad \text{since } \big(\sin(u) \big)' = \cos(u) \\ &= \frac{1}{2017} \Big(- \cos(\sin(\pi)) + \cos(\sin(0)) \Big) \\ &= \frac{1}{2017} (-\cos(0) + \cos(0)) = 0 \; . \end{split}$$

- 9. **True/False:** Let $I \subset \mathbb{R}$ be an open non-empty and bounded interval and let $f: I \to \mathbb{R}$ be a continuous function. Let $[a,b] \subseteq I$. If the statement is true you should prove it. If the statement is false you should give a counter example.
 - (a) If $\int_a^b f(x) dx = 0$, then f has a zero [a, b].
 - (b) If $\int_a^b f(x) dx \ge 0$, then $f(x) \ge 0$ for all $x \in [a, b]$.
 - (c) If f(x) < 0 for all $x \in [a, b]$, then $\int_a^b f(x) dx < 0$.

Solution:

- (a) True. By the mean value theorem for integrals, there exists $u \in]a, b[$ such that $0 = \int_a^b f(x) dx = f(u)(b-a)$. Since b > a, we must have f(u) = 0.
- (b) False. Take for example f(x) = x on the interval [-1,2]. Then $\int_{-1}^{2} f(x) dx = \left(\frac{x^2}{2}\right)\Big|_{-1}^{2} = \frac{3}{2} \ge 0$ but f(-1) = -1 < 0.
- (c) True. By the mean value theorem for integrals, there exists $u \in]a,b[$ such that $\int_a^b f(x) \, dx = f(u)(b-a)$. Since we have f(u) < 0 and b > a, the result holds.
- 10. Calculate the following formal integrals.
 - (a) $\int \frac{\sin(x)}{\cos(x)^3} dx$
 - (b) $\int x^2 \cos(x) dx$
 - (c) $\int x \log x \, dx$
 - (d) $\int \frac{1}{\sqrt{4-3x^2}} dx$ (Hint: recall (arcsin x)')
 - (e) $\int (2x+2)e^{x^2+2x+3} dx$
 - (f) $\int \frac{x^2+1}{x^3+3x} \, dx$
 - (g) $\int \frac{x^3}{(1+x^4)^{\frac{1}{3}}} dx$

(h)
$$\int \frac{\sin(\log(x))}{x} dx$$

(i) $\int (2x+5)(x^2+5x)^7 dx$

Solution:

(a) We take $u(x) = \cos(x)$, so $u'(x) = -\sin(x)$. We get

$$\int \frac{\sin(x)}{\cos(x)^3} dx = \int \frac{-u'(x)}{u(x)^3} dx = -\int u'(x)u^3(x) dx = -\int \left(-\frac{u^{-2}(x)}{2}\right)' dx$$
$$= \frac{u^{-2}}{2}(x) + C = \frac{1}{2\cos^2(x)} + C.$$

(b) We use integration by parts twice: first with $f'(x) = \cos(x)$ [$\Rightarrow f(x) = \sin(x)$], $g(x) = x^2$ [$\Rightarrow g'(x) = 2x$] and then with $f'(x) = \sin(x)$ [$\Rightarrow f(x) = -\cos(x)$], $g(x) = x \implies g'(x) = 1$, we get

$$\int x^2 \cos(x) \, dx = \sin(x) \, x^2 - 2 \int \sin(x) \, x \, dx = \sin(x) \, x^2 - 2 \left(-\cos(x) \, x + \int \cos(x) \, dx \right)$$
$$= \left(x^2 - 2 \right) \sin(x) + 2x \cos(x) + C.$$

(c) Take f'(x) = x and so $f(x) = x^2/2$ and take $g(x) = \log x$ so $g'(x) = \frac{1}{x}$ We have:

$$\int x \log x \ dx = \frac{x^2}{2} \log x - \int \frac{x^2}{2} \frac{1}{x} \ dx = \frac{x^2}{2} \log x - \frac{x^2}{4} + C.$$

(d) Using the change of variable $y = \sqrt{3}x/2$ we obtain

$$\frac{1}{\sqrt{4-3x^2}} = \frac{1}{2} \cdot \frac{1}{\sqrt{1-y^2}}$$

and we also have that $dx = \frac{2}{\sqrt{3}}dy$. So

$$\int \frac{1}{\sqrt{4-3x^2}} \, dx = \int \frac{1}{2} \cdot \frac{1}{\sqrt{1-y^2}} (\frac{2}{\sqrt{3}} dy) = \frac{1}{\sqrt{3}} \int \frac{1}{\sqrt{1-y^2}} \, dy = \frac{1}{\sqrt{3}} \arcsin y + C$$
$$= \frac{1}{\sqrt{3}} \arcsin(\frac{\sqrt{3}x}{2}) + C.$$

(e) We set $u(x) = x^2 + 2x + 3$, so that u'(x) = 2x + 2. Thus, our integral becomes

$$\int (2x+2)e^{x^2+2x+2} dx = \int e^{u(x)}u'(x) dx = e^{u(x)} + C = e^{x^2+2x+3} + C.$$

(f) We set $u(x) = x^3 + 3x$, then u'(x) = 3x + 3. Then, our integral becomes

$$\int \frac{x^2+1}{x^3+3x} \, dx = \int \frac{u'(x)}{3u(x)} \, dx = \frac{1}{3} \int \frac{u'(x)}{u(x)} \, dx = \frac{1}{3} \log|u(x)| + c = \frac{1}{3} \log|x^3+3x| + C.$$

(g) We set $u(x) = 1 + x^4$, so that $u'(x) = 4x^3$. Then, we have

$$\int \frac{x^3}{(1+x^4)^{\frac{1}{3}}} dx = \frac{1}{4} \int \frac{u'(x)}{u^{\frac{1}{3}}(x)} dx = \frac{1}{4} \frac{3}{2} u^{\frac{2}{3}}(x) + C = \frac{3}{8} (1+x^4)^{\frac{2}{3}} + C.$$

(h) We set $u(x) = \log(x)$, so that $u'(x) = \frac{1}{x}$. Then, we have

$$\int \frac{\sin(\log(x))}{x} dx = \int \sin(u(x))u'(x) dx = -\cos(u(x)) + C = -\cos(\log(x)) + C.$$

(i) This is the integral of a polynomial, so we could expand the product and use the power rule. Yet, in this case u-substitution makes it much faster. We set $u(x) = x^2 + 5x$, so that u'(x) = 2x + 5. Then, we have

$$\int (2x+5)(x^2+5x)^7 dx = \int u^7(x)u'(x) dx = \frac{1}{8}u^8(x) + C = \frac{1}{8}(x^2+5x)^8 + C.$$

11. Let f be a continuous function on a closed interval [a,b]. Show that |f| is integrable and $|\int_a^b f(x)dx| \leq \int_a^b |f(x)|dx$.

Solution: Since f is continuous also |f| is continuous on [a,b], hence it is integrable. We distinguish two cases.

If $\int_a^b f(x)dx \ge 0$, then $|\int_a^b f(x)dx| = \int_a^b f(x)dx = \overline{S}(f) = \inf_{\sigma} \overline{S}_{\sigma}(f)$, and for every partition σ of [a,b] given by $a = x_0 < \cdots < x_n = b$ we have

$$\overline{S}_{\sigma}(f) = \sum_{i=1}^{n} (\sup_{x \in [x_{i-1}, x_i]} f(x))(x_i - x_{i-1}) \le \sum_{i=1}^{n} \sup_{x \in [x_{i-1}, x_i]} |f(x)|(x_i - x_{i-1}) = \overline{S}_{\sigma}(|f|)$$

So $\inf_{\sigma} \overline{S}_{\sigma}(f) \leq \inf_{\sigma} \overline{S}_{\sigma}(|f|) = \int_{a}^{b} |f(x)| dx$.

If $\int_a^b f(x)dx < 0$, then $|\int_a^b f(x)dx| = -\int_a^b f(x)dx = \int_a^b -f(x)dx$. Since |-f| = |f| and $\int_a^b -f(x)dx \ge 0$, by applying the previous case, we obtain $\int_a^b -f(x)dx \le \int_a^b |f(x)|dx$.

12. Calculate the following integral:

$$\int_0^{\pi/2} \sin(x)^5 dx$$

(Hint: remember $\cos^2(x) + \sin^2(x) = 1$ and try to make a substitution of the form $u = \cos x$).

Solution:

We want to use the fact that $(\sin x)' = \cos x$ and $(\cos x)' = -\sin x$. For this we use the formula $\sin^2 x = 1 - \cos^2 x$ to write

$$\int_0^{\pi/2} \sin(x)^5 \ dx = \int_0^{\pi/2} (1 - \cos^2 x)^2 \sin x \ dx.$$

Take $u(x) = \cos(x)$ and we see that $u'(x) = -\sin x$ which means $du = -\sin x dx$. Note that $\cos(0) = 1$ and $\cos(\pi/2) = 0$, so

$$\int_0^{\pi/2} (1 - \cos^2 x)^2 \sin x \, dx = -\int_1^0 (1 - u^2)^2 du = \int_0^1 (1 - u^2)^2 \, du$$
$$= \int_0^1 (1 - 2u^2)^2 + u^4 \, du = \left(t - \frac{2}{3}t^3 + \frac{1}{5}t^5\right)\Big|_0^1 = \frac{8}{15}$$

13. Prove that if $f, g: I \to \mathbb{R}$ are square-integrable continuous functions over I^1 , then

$$\left| \int_I f(x)g(x)dx \right| \leq \left(\int_I f(x)^2 dx \right)^{\frac{1}{2}} \left(\int_I g(x)^2 dx \right)^{\frac{1}{2}}$$

This is known as the Cauchy–Schwarz inequality. (Hint: If at least one of the functions is zero, then there is nothing to prove. Suppose both are non-zero. Evaluate $\int_I (f(x) - \lambda g(x))^2 dx$ and choose $\lambda \in \mathbb{R}$ carefully.)

Solution: As mentioned above, we assume that both functions are non-zero. Then none of the integrals on the right-hand side of the inequality are 0 because each integral is the integral of a non-negative continuous function that is not identically 0: a theorem guarantees that such an integral is strictly positive. Using the hint:

$$0 \le \int_{I} (f(x) - \lambda g(x))^{2} dx = \int_{I} (f(x)^{2} - 2\lambda f(x)g(x) + \lambda^{2} g(x)^{2}) dx \tag{2}$$

$$= \int_{I} f(x)^{2} dx - 2\lambda \int_{I} f(x)g(x) dx + \lambda^{2} \int_{I} g(x)^{2} dx.$$
 (3)

Let

$$\lambda = \frac{\int_{I} f(x)g(x)dx}{\int_{I} g(x)^{2}dx},\tag{4}$$

which is well defined as the denominator is not 0, and insert this into (2), which gives

$$0 \le \int_{I} f(x)^{2} dx - \frac{\left(\int_{I} f(x)g(x)dx\right)^{2}}{\int_{I} g(x)^{2} dx}.$$
 (5)

Rearranging and taking the square root gives

$$\left| \int_{I} f(x)g(x)dx \right| \le \left(\int_{I} f(x)^{2}dx \right)^{\frac{1}{2}} \left(\int_{I} g(x)^{2}dx \right)^{\frac{1}{2}} \tag{6}$$

as required.

Revision Exercises

Questions 14-17 are multiple choice questions. In each of the questions you should explain why your choice is correct.

- 14. The equation $x(e^{x} e^{-x}) e^{x} = 0$
 - (a) has no solution belonging to the interval $[0, +\infty[$.
 - (b) has exactly one real solution.
 - (c) has no solution belonging to the interval $]-\infty,0[$.
 - (d) has at least two real solutions.

Solution: (d) is correct. Let $f(x) = x(e^x - e^{-x}) - e^x$. Then $\lim_{x \to +\infty} f(x) = +\infty$, $\lim_{x \to -\infty} f(x) = +\infty$ and f(0) = -1 < 0. By the intermediate value theorem, there must be at least two solutions to the equation.

¹Meaning that f^2 and g^2 are integrable.

- 15. Let the one-to-one function $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \sinh(\sinh(x))$ and let a = f(1). Then the derivative of the inverse function $g = f^{-1}$ at a is
 - (a) $g'(a) = \frac{1}{\cosh(\sinh(1))}$.
 - (b) $g'(a) = \frac{1}{\cosh(\sinh(a))\cosh(a)}$.
 - (c) $g'(a) = \frac{1}{\cosh(\sinh(1))\cosh(1)}$.
 - (d) $g'(a) = \frac{1}{\cosh(\sinh(a))\cosh(1)}$.

Solution: Using the inverse function theorem we have

$$g'(x) = \frac{1}{f'(g(x))}\tag{7}$$

and using the chain rule we have

$$f'(x) = \cosh(x)\cosh(\sinh(x)) \tag{8}$$

and g(a) = 1 which gives

$$g'(x) = \frac{1}{\cosh(1)\cosh(\sinh(1))} \tag{9}$$

and thus (c) is correct.

- 16. The limit $\lim_{x\to 0} \frac{e^{|x|}-1-|x|}{x^2}$ is
 - (a) 0.
 - (b) 1.
 - (c) $\frac{1}{2}$.
 - (d) Does not exist.

Solution: Consider the function $f(x) = \frac{e^x - 1 - x}{x^2}$. Applying L'Hôpital's rule twice gives

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{e^x}{2} = \frac{1}{2} \tag{10}$$

Applying a similar argument on g(x)=f(-x) shows that $\lim_{x\to 0}g(x)=\frac{1}{2}$. In particular, this implies that $\lim_{x\to 0}\frac{e^{|x|}-1-|x|}{x^2}=\frac{1}{2}$ and thus (c) is correct.

- 17. Let the function $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = e^{e^x 1}$. The truncated expansion of order 2 of f around x = 0 is
 - (a) $f(x) = 1 + x + x^2 + x^2 \epsilon(x)$
 - (b) $f(x) = 2x + x^2 + x^2 \epsilon(x)$
 - (c) $f(x) = 1 + x + \frac{1}{2}x^2 + x^2\epsilon(x)$
 - (d) $f(x) = 1 + x + 2x^2 + x^2 \epsilon(x)$

where $\lim_{x\to 0} \epsilon(x) = 0$.

Solution: (a) is correct. Note that f(0) = 1 and

$$f'(x) = e^{e^x + x - 1} \Rightarrow f'(0) = 1$$

 $f''(x) = (e^x + 1)e^{e^x + x - 1} \Rightarrow f''(0) = 2$

Hence,

$$f(x) = 1 + x + x^2 + x^2 \epsilon(x). \tag{11}$$

Questions 18-22 are true or false questions. If the statement is true, you should prove it. If it is false, you should give a counter example.

18. For a < b in \mathbb{R} , let a function $f : [a, b] \to \mathbb{R}$ be continuous on [a, b] and twice differentiable on [a, b]. If f(a) = f(b) = 0, then there exists $c \in]a, b[$ such that f''(c) = 0.

Solution: False. Take $f: [-1,1] \to \mathbb{R}, f(x) = 1 - x^2$.

19. Define $f: \mathbb{R} \to \mathbb{R}, f(x) = \int_0^x |t| dt$. Then $f'(x) = x \quad \forall x \in \mathbb{R}$.

Solution: False. By evaluating the integral we see that

$$f(x) = \frac{1}{2}\operatorname{sign}(x)x^2 \tag{12}$$

and thus, f'(x) = |x|, since f'(x) = x for $x \ge 0$ and f(x) = -x for x < 0.

20. Let $f: I \to \mathbb{R}$ be differentiable over an open interval $I \subset \mathbb{R}$. Then the derivative of f at the point $y \in I$ satisfies

$$f'(y) = \lim_{x \to 0} \frac{f(y+x) - f(y)}{x}.$$

Solution: True. This is the definition of the derivative of f at y.

21. Let $f:]0,1[\to \mathbb{R}$ be a differentiable function on]0,1[. Then the function $f':]0,1[\mapsto \mathbb{R}$ is differentiable on]0,1[.

Solution: False. Take the function defined in Question 19. f'(x) = |x| is not differentiable at 0.

22. A function $f: \mathbb{R} \to \mathbb{R}$ s.t. $\forall \varepsilon > 0$ and $\forall x, y \in \mathbb{R}$ with the following property

$$|x - y| \le 2\varepsilon \Rightarrow |f(x) - f(y)| \le \varepsilon$$

is continuous on \mathbb{R} .

Solution: True. Let $x_0 \in \mathbb{R}$. Let $\varepsilon > 0$ be given. Let $\delta = \varepsilon$. Then, $|x - x_0| < \delta = \varepsilon \Rightarrow |f(x) - f(x_0)| \le \frac{\varepsilon}{2} < \varepsilon$. Hence, f is continuous.