
Analysis I (English)
Roberto Svaldi and Stefano Filipazzi
Fall Semester 2021–2022

Analysis 1 - Exercise Set 13

Remember to check the correctness of your solutions whenever possible.

To solve the exercises you can use only the material you learned in the course.

1. State on which closed intervals the following functions are integrable and compute the an-
tiderivatives.

(a) f(x) = ex;

(b) f(x) = sinh(x);

(c) f(x) = (ax+ b)s with s ∈ Z and a, b ∈ R \ {0};
(d) f(x) = cos(x)3;

(e) f(x) =

{
1 x = 0,

0 x ̸= 0;

(f) f(x) = cot(x), cot(x) := cos(x)
sin(x) .

(g) f(x) = |x|s, s > 0.

Solution:

(a) The function is continuous on R hence it is integrable on every closed interval. The
antiderivative is F (x) = ex + c.

(b) The function is continuous on R hence it is integrable on every closed interval. We
compute the antiderivative formally as follows:

F (x) =

∫
ex − e−x

2
dx =

ex + e−x

2
+ c = cosh(x) + c

where c is the constant of integration.

(c) If s ≥ 0 the function is continuous on R hence it is integrable on every closed interval.
If s ≤ −1 the function is continuous and hence integrable on every closed interval
contained in R\{− b

a}. We compute the antiderivative formally as follows: if s ̸= −1
then

F (x) =

∫
(ax+ b)sdx =

1

a

∫
a(ax+ b)sdx =

1

a(s+ 1)
(ax+ b)s+1 + c.

If s = −1, we make the substitution u = ax+ b so x = 1
a (u− b) with derivative 1

a∫
(ax+ b)−1dx =

∫
u−1

a
du =

1

a
log |u|+ c =

1

a
log |ax+ b|+ c.



(d) The function is continuous on R hence it is integrable on every closed interval.

We have two possible strategies. The first one consists in writing cos3(x) = cos(x)(1−
sin2(x)), so that the integral becomes∫

cos(x) dx−
∫

sin2(x) cos(x) dx,

where the first integral can be computed directly, while for the second one we set
u(x) = sin(x) and u′(x) = cos(x). Then, we get∫

cos(x) dx−
∫

sin2(x) cos(x) dx = sin(x)−
∫

u2(x)u′(x) dx

= sin(x)− 1

3
u3(x) + c

= sin(x)− sin3(x)

3
+ c.

Alternatively, we use integration by parts with g(x) = cos(x)2 and h(x) = sin(x),
so that g′(x) = −2 cos(x) sin(x) and h′(x) = cos(x)∫

cos(x)3dx =

∫
gh′dx = gh−

∫
g′hdx = cos(x)2 sin(x) + 2

∫
cos(x) sin(x)2dx

= cos(x)2 sin(x) + 2

∫
cos(x)(1− cos(x)2)dx = cos(x)2 sin(x) + 2 sin(x)− 2

∫
cos(x)3dx

We use the equation∫
cos(x)3dx = cos(x)2 sin(x) + 2 sin(x)− 2

∫
cos(x)3dx

to solve for
∫
cos(x)3dx, and we get

F (x) =
1

3
(sin(x)(2 + cos2(x))) + c.

Notice that the two answers are the same, we just need to rewrite cos2(x) = 1 −
sin2(x) to go from the second answer to the first answer.

(e) Since f is continuous everywhere except at x = 0, f is clearly integrable on any
closed interval not containing 0. We claim that f is also integrable on intervals
containing 0. Let I = [a, b] be such interval, and let σn be the even partition of I
into n subintervals. Notice that 0 belongs to at least one of these sub-intervals, and
to at most two of these sub-intervals (this only happens if 0 is the right-end point
of a sub-interval that is not the last sub-interval, so that it is also the left-end point
of the subsequent one). Notice that, on every sub-interval, the infimum of f is 0, as
the function is identically 0 except at 0, where it is strictly positive. To conclude, we
need to show that the upper sums converge to 0. If Ii is a sub-interval and 0 ̸∈ Ii,
then the supremum of f on Ii is 0. So, we only need to consider the sub-intervals
containing 0. There, the supremum is 1, as f(0) = 1. Then, each such sub-interval
would contribute with 1· b−a

n . Since there are at most 2 such sub-intervals, the upper

sum is bounded above by 2(b−a)
n . As b and a are fixed, this quantity converges to 0

as n → +∞. So, f is integrable on every closed interval.

There is no antiderivative because if there was it would be g(x) =
∫ x

0
f(t)dt+C = C

and g′(x) = 0 ∀x ∈ R. Hence, g′(0) ̸= f(0).
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(f) One can quickly verify that g(x) = ln | sin(x)| + C is an antiderivative. This

can be seen from cot(x) = (sin(x))′

sin(x) . cot(x) is also continuous on the intervals

Si = (kπ, (k + 1)π) and therefore integrable in any interval contained in any of
the sets Si. We will show that it is not integrable at any interval containing the
endpoints of Si. By symmetry it suffices to consider [−π

4 ,
π
4 ]. On [−π

4 ,
π
4 ] we have

cos(x) > 1
2 . We also know | sin(x)| ≤ x.

Let Π = {π1, · · · , πn} be a partition of [−π
4 ,

π
4 ]. There will be at least one of

the intervals in Π containing 0. Call it πi. Then sup
x∈πi

cot(x) = +∞ and inf
x∈πi

= −∞

which shows that the Darboux sums do not converge. Hence, cot(x) is not Riemann
integrable in an interval containing a discontinuity of cot(x).

(g) Since s > 0, the function is continuous on R hence it is integrable on every closed
interval. Moreover, we know that the derivative of the function g : R∗

+ → R, g(x) :=
xt, t ∈ R is g′(t) = txt−1. Hence, an antiderivative of f is given by G(x) =
sgn(x)
s+1 |x|s+1.

2. Determine the number c that satisfies the Mean Value Theorem for Integrals for the function
f(x) = x2 + 3x+ 2 on the interval [1, 4].

Solution: First let’s notice that the function is a polynomial and so is continuous on the
given interval. This means that we can use the Mean Value Theorem. We have∫ 4

1

x2 + 3x+ 2 dx = (c2 + 3c+ 2)(4− 1)

⇒ (
1

3
x3 +

3

2
x2 + 2x)

∣∣4
1 = 3(c2 + 3c+ 2)

⇒ 99

2
= 3c2 + 9c+ 6

⇒ 0 = 3c2 + 9c− 87

2

This equation has the two solutions c1 = (−3 +
√
67)/2 and c2 = (−3−

√
67)/2. Clearly

the second number is not in the interval [1, 4] so c1 is the acceptable value. Note that it
is possible for both numbers to be in the interval so don’t expect only one to be in the
interval.

3. Let

f(x) =

{
sin(x) 0 ≤ x ≤ π

2

1 π
2 ≤ x ≤ 3

Compute
∫ 3

0
f(x)dx.

Solution:∫ 3

0

f(x)dx =

∫ π
2

0

f(x)dx+

∫ 3

π
2

f(x)dx =

∫ π
2

0

sin(x)dx+

∫ 3

π
2

1dx = 1 +
(
3− π

2

)
.
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4. True/False: If the statement is true you should prove it. If it is false you should give a
counterexample. Let F be an anti-derivative of f on [a, b].

(a) If f(x) ≤ 0 for all x ∈ [a, b], then F (x) ≤ 0 for all x ∈ [a, b].

(b) For all x ∈ [a, b], we have F (x) =

∫ x

a

f(t) dt.

Solution:

(a) False. Take for example f(x) = x on the interval [−2,−1]. Then f(x) ≤ 0 on
[−2,−1] but F (x) = 1

2x
2 > 0 For all x ∈ [−2,−1].

(b) False. Consider for example the constant function f(x) = 1 on the interval [0, 1].
Then F (x) = x+ 1 is an anti-derivative of f but∫ x

0

f(t) dt =

∫ x

0

dt = x− 0 = x ̸= x+ 1 = F (x).

Indeed, remember that, once we know there is one anti-derivative, then there are
infinitely many (we may add any constant!).

5. Show that:

(a) if f : [−a, a] → R is an integrable odd function then
∫ a

−a
f(x)dx = 0;

(b) if f : [−a, a] → R is an integrable even function then
∫ a

−a
f(x)dx = 2

∫ a

0
f(x)dx.

Solution:

(a) Using Algebra of Integrals we see∫ a

−a

f(x)dx =

∫ a

0

f(x)dx+

∫ 0

−a

f(x)dx

=

∫ a

0

f(x)dx−
∫ 0

a

f(−t)dt

=

∫ a

0

f(x)dx+

∫ 0

a

f(t)dt

=

∫ a

0

f(x)dx−
∫ a

0

f(t)dt = 0,

where in the second line we make the change of variable t = −x and dt = −dx, in
the third line we use that f is odd to get f(−t) = −f(t), and in the last step we
flip sign by swapping the extrema of integration.

(b) Using Algebra of Integrals we see∫ a

−a

f(x)dx =

∫ a

0

f(x)dx+

∫ 0

−a

f(x)dx

=

∫ a

0

f(x)dx−
∫ 0

a

f(−t)dt

=

∫ a

0

f(x)dx−
∫ 0

a

f(t)dt

=

∫ a

0

f(x)dx+

∫ a

0

f(t)dt = 2

∫ a

0

f(x)dx,
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where in the second line we make the change of variable t = −x and dt = −dx, in
the third line we use that f is even to get f(−t) = f(t), and in the last step we flip
sign by swapping the extrema of integration.

6. Calculate the following formal integrals.

(a)
∫
sin(x)2dx

(b)
∫
arcsin(x) dx

(c)
∫ sinh(x)

ex+1 dx

(d)
∫
eax cos(bx) dx (a ̸= 0), (Hint: apply integration by parts multiple times until you

see a pattern.)

Solution:

(a) We apply integration by parts with f = sin(x), g = − cos(x) and f ′ = cos(x),
g′ = sin(x). ∫

sin(x)2dx = − sin(x) cos(x) +

∫
cos(x)2dx

= − sin(x) cos(x) +

∫
1− sin(x)2dx = − sin(x) cos(x) + x−

∫
sin(x)2dx.

From the equation we just obtained we get
∫
sin(x)2dx = 1

2 (x− sin(x) cos(x)) + C.

(b) We apply integration by parts. Take f ′(x) = 1 so f(x) = x and g(x) = arcsinx so
g′(x) = 1√

1−x2
. We get∫

arcsinx dx =

∫
1 · arcsinx dx = x · arcsinx−

∫
x · 1√

1− x2 dx
.

To figure out the last integral we notice that if we define u(x) = (1 − x2) then
u′(x) = −2x. So we can write∫

x · 1√
1− x2

dx = −1

2

∫
(−2x)(1− x2)−1/2 dx = −1

2

∫
u′(x)u(x)−1/2dx

= −u(x)1/2 + C = −(1− x2)1/2 + C = −
√
1− x2 + C.

Now combine everything together and write:

∫
arcsinx dx = x · arcsinx−

∫
x · 1√

1− x2 dx
= x · arcsinx+

√
1− x2 + C.

(c) We use the definition of sinh:∫
sinh(x)

ex + 1
dx =

1

2

∫
ex − e−x

ex + 1
dx =

1

2

∫
1− (e−x)2

1 + e−x
dx

=
1

2

∫
(1− e−x) dx =

1

2

(
x+ e−x

)
+ C .
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(d) We apply integration by parts twice. Let Ia,b =

∫
eax cos(bx) dx. We take f ′(x) =

eax [⇒ f(x) = 1
a eax] and also g(x) = cos(bx) [⇒ g′(x) = −b sin(bx)] we get

Ia,b =
1

a
eax cos(bx) +

b

a

∫
eax sin(bx) dx.

We apply integration by parts one more time on the last integral. Take f ′(x) = eax

and g(x) = sin(bx) [⇒ g′(x) = b cos(bx)]∫
eax sin(bx) dx =

1

a
eax sin(bx)− b

a

∫
eax cos(bx) dx.

Note that we recovered Ia,b again in last integral. So we can combine the two
equations and compute Ia,b as follows:

Ia,b =
1

a
eax cos(bx) +

b

a

(
1

a
eax sin(bx)− b

a
Ia,b

)
⇔

(
1 +

b2

a2

)
Ia,b =

eax

a

(
cos(bx) +

b

a
sin(bx)

)
⇔ Ia,b =

eax

a2 + b2

(
a cos(bx) + b sin(bx)

)
+ C.

7. Let f : R → R be a continuous function with a period T > 0. Let F be defined by

F (x) =

x∫
0

f (t) dt.

Show that F is periodic with period T if and only if

T∫
0

f (t) dt = 0.

Solution: We first assume F is periodic with period T , and then show this implies∫ T

0
f (t) dt = 0. This is easy, we just insert the definition of F

0 = F (T )− F (0) =

∫ T

0

f (t) dt−
∫ 0

0

f (t) dt =

∫ T

0

f (t) dt.

Now we must show that
∫ T

0
f (t) dt = 0 implies that F is periodic i.e. F (x+T )−F (x) = 0

for all x ∈ R. Fix one x ∈ R. We can use the definition of F to write

F (x+ T )− F (x) =

∫ x+T

0

f(t) dt−
∫ x

0

f(t) dt =

∫ x+T

x

f(t) dt =

∫ x+T

x

f(t) dt.

In the last equality, we used the fact that the integral of a periodic function with period
T is always the same on any interval of length T ; we will prove this claim below. But by

the assumption
∫ T

0
f (t) dt = 0. So F (x+ T )− F (x) = 0.
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So, we are left to show that the integral of a periodic function with period T is always
the same on any interval of length T . Said otherwise, we need to show that∫ T

0

f(s)ds =

∫ x+T

x

f(t)dt

for every x ∈ R. First, we consider

k = sup{m ∈ Z|mT < x+ T},

which exists, as the set is non-empty (e.g., take m very negative so that mT < x) and
bounded above (e.g., bounded above by |x|/T + 1). Then, we use the change of variable
s = t− kT , and we get∫ x+T

x

f(t)dt =

∫ x+T−kT

x−kT

f(s+ kT )ds =

∫ x+T−kT

x−kT

f(s)ds,

where in the last equality we used that f(s) = f(s+ kT ), by the T -periodicity. Now, by
the definition of k, we have x + T − kT > 0 and x − kT = x + T − (k + 1)T ≤ 0. So, if
we define y = x− kT , we have y ≤ 0 and 0 < y + T ≤ T . So, we have∫ x+T−kT

x−kT

f(s)ds =

∫ y+T

y

f(s)ds =

∫ 0

y

f(s)ds+

∫ y+T

0

f(s)ds. (1)

Now, on the first summand, we make the change of variable u = s+ T . So, we have∫ 0

y

f(s)ds =

∫ T

y+T

f(u− T )du =

∫ T

y+T

f(u)du,

where in the second equality we used that f(u) = f(u − T ). If we substitute it back in
(1), we get∫ x+T−kT

x−kT

f(s)ds =

∫ 0

y

f(s)ds+

∫ y+T

0

f(s)ds =

∫ T

y+T

f(s)ds+

∫ y+T

0

f(s)ds =

∫ T

0

f(s)ds,

where we used that the variable of integration is just a dummy variable, so we can change
the letter we used.

8. Calculate the following integrals.

(a)
∫ π2/9

π2/16
cos(

√
x) dx

(b)
∫ π1/2017

0
sin(sin(x2017)) cos(x2017)x2016 dx

Solution:

(a) We change the variable using u =
√
x which gives x = u2 and dx = 2u du. Note

that u(π2/16) = π/4 and u(π2/9) = π/3. We have∫ π2/9

π2/16

cos(
√
x) dx = 2

∫ π/3

π/4

u cos(u) du
(∗)
= 2

[
u sin(u)

]π/3
π/4

− 2

∫ π/3

π/4

sin(u) du

= 2
[
u sin(u) + cos(u)

]π/3
π/4

= 1−
√
2− π

√
2

4
+

π
√
3

3
.
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For (∗) we used integration by parts by taking f ′(u) = cos(u) , g(u) = u.

(b) We change the variable with u = x2017 which gives du = 2017x2016 dx. Note that
u(0) = 0 and u(π1/2017) = π. We get∫ π1/2017

0

sin(sin(x2017)) cos(x2017)x2016 dx =
1

2017

∫ π

0

sin(sin(u)) cos(u) du

=
1

2017

[
− cos(sin(u))

]π
0

since
(
sin(u)

)′
= cos(u)

=
1

2017

(
− cos(sin(π)) + cos(sin(0))

)
=

1

2017
(− cos(0) + cos(0)) = 0 .

9. True/False: Let I ⊂ R be an open non-empty and bounded interval and let f : I → R be
a continuous function. Let [a, b] ⊆ I. If the statement is true you should prove it. If the
statement is false you should give a counter example.

(a) If

∫ b

a

f(x) dx = 0, then f has a zero [a, b].

(b) If

∫ b

a

f(x) dx ≥ 0, then f(x) ≥ 0 for all x ∈ [a, b].

(c) If f(x) < 0 for all x ∈ [a, b], then

∫ b

a

f(x) dx < 0.

Solution:

(a) True. By the mean value theorem for integrals, there exists u ∈ ]a, b[ such that

0 =
∫ b

a
f(x) dx = f(u)(b− a). Since b > a, we must have f(u) = 0.

(b) False. Take for example f(x) = x on the interval [−1, 2]. Then
∫ 2

−1
f(x) dx =(

x2

2

)∣∣∣2
−1

= 3
2 ≥ 0 but f(−1) = −1 < 0.

(c) True. By the mean value theorem for integrals, there exists u ∈ ]a, b[ such that∫ b

a
f(x) dx = f(u)(b− a). Since we have f(u) < 0 and b > a, the result holds.

10. Calculate the following formal integrals.

(a)
∫ sin(x)

cos(x)3 dx

(b)
∫
x2 cos(x) dx

(c)
∫
x log x dx

(d)
∫

1√
4−3x2

dx (Hint: recall (arcsinx)′)

(e)
∫
(2x+ 2)ex

2+2x+3 dx

(f)
∫

x2+1
x3+3x dx

(g)
∫

x3

(1+x4)
1
3
dx
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(h)
∫ sin(log(x))

x dx

(i)
∫
(2x+ 5)(x2 + 5x)7 dx

Solution:

(a) We take u(x) = cos(x), so u′(x) = − sin(x). We get∫
sin(x)

cos(x)3
dx =

∫
−u′(x)

u(x)3
dx = −

∫
u′(x)u3(x) dx = −

∫ (
−u−2(x)

2

)′

dx

=
u−2

2
(x) + C =

1

2 cos2(x)
+ C.

(b) We use integration by parts twice: first with f ′(x) = cos(x) [⇒ f(x) = sin(x)],
g(x) = x2 [⇒ g′(x) = 2x] and then with f ′(x) = sin(x) [⇒ f(x) = − cos(x)],
g(x) = x [⇒ g′(x) = 1], we get∫

x2 cos(x) dx = sin(x)x2 − 2

∫
sin(x)x dx = sin(x)x2 − 2

(
− cos(x)x+

∫
cos(x) dx

)
=

(
x2 − 2

)
sin(x) + 2x cos(x) + C.

(c) Take f ′(x) = x and so f(x) = x2/2 and take g(x) = log x so g′(x) = 1
x We have:∫

x log x dx =
x2

2
log x−

∫
x2

2

1

x
dx =

x2

2
log x− x2

4
+ C.

(d) Using the change of variable y =
√
3x/2 we obtain

1√
4− 3x2

=
1

2
· 1√

1− y2

and we also have that dx = 2√
3
dy. So∫

1√
4− 3x2

dx =

∫
1

2
· 1√

1− y2
(
2√
3
dy) =

1√
3

∫
1√

1− y2
dy =

1√
3
arcsin y + C

=
1√
3
arcsin(

√
3x

2
) + C.

(e) We set u(x) = x2 + 2x+ 3, so that u′(x) = 2x+ 2. Thus, our integral becomes∫
(2x+ 2)ex

2+2x+2 dx =

∫
eu(x)u′(x) dx = eu(x) + C = ex

2+2x+3 + C.

(f) We set u(x) = x3 + 3x, then u′(x) = 3x+ 3. Then, our integral becomes∫
x2 + 1

x3 + 3x
dx =

∫
u′(x)

3u(x)
dx =

1

3

∫
u′(x)

u(x)
dx =

1

3
log |u(x)|+c =

1

3
log |x3+3x|+C.

(g) We set u(x) = 1 + x4, so that u′(x) = 4x3. Then, we have∫
x3

(1 + x4)
1
3

dx =
1

4

∫
u′(x)

u
1
3 (x)

dx =
1

4

3

2
u

2
3 (x) + C =

3

8
(1 + x4)

2
3 + C.
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(h) We set u(x) = log(x), so that u′(x) = 1
x . Then, we have∫

sin(log(x))

x
dx =

∫
sin(u(x))u′(x) dx = − cos(u(x)) + C = − cos(log(x)) + C.

(i) This is the integral of a polynomial, so we could expand the product and use the
power rule. Yet, in this case u-substitution makes it much faster. We set u(x) =
x2 + 5x, so that u′(x) = 2x+ 5. Then, we have∫

(2x+ 5)(x2 + 5x)7 dx =

∫
u7(x)u′(x) dx =

1

8
u8(x) + C =

1

8
(x2 + 5x)8 + C.

11. Let f be a continuous function on a closed interval [a, b]. Show that |f | is integrable and

|
∫ b

a
f(x)dx| ≤

∫ b

a
|f(x)|dx.

Solution: Since f is continuous also |f | is continuous on [a, b], hence it is integrable. We
distinguish two cases.

If
∫ b

a
f(x)dx ≥ 0, then |

∫ b

a
f(x)dx| =

∫ b

a
f(x)dx = S(f) = infσ Sσ(f), and for every

partition σ of [a, b] given by a = x0 < · · · < xn = b we have

Sσ(f) =

n∑
i=1

( sup
x∈[xi−1,xi]

f(x))(xi − xi−1) ≤
n∑

i=1

sup
x∈[xi−1,xi]

|f(x)|(xi − xi−1) = Sσ(|f |)

So infσ Sσ(f) ≤ infσ Sσ(|f |) =
∫ b

a
|f(x)|dx.

If
∫ b

a
f(x)dx < 0, then |

∫ b

a
f(x)dx| = −

∫ b

a
f(x)dx =

∫ b

a
−f(x)dx. Since | − f | = |f | and∫ b

a
−f(x)dx ≥ 0, by applying the previous case, we obtain

∫ b

a
−f(x)dx ≤

∫ b

a
|f(x)|dx.

12. Calculate the following integral: ∫ π/2

0

sin(x)5 dx

(Hint: remember cos2(x)+ sin2(x) = 1 and try to make a substitution of the form u = cosx).

Solution:

We want to use the fact that (sinx)′ = cosx and (cosx)′ = − sinx. For this we use the
formula sin2 x = 1− cos2 x to write∫ π/2

0

sin(x)5 dx =

∫ π/2

0

(1− cos2 x)2 sinx dx.

Take u(x) = cos(x) and we see that u′(x) = − sinx which means du = − sinxdx. Note
that cos(0) = 1 and cos(π/2) = 0, so∫ π/2

0

(1− cos2 x)2 sinx dx = −
∫ 0

1

(1− u2)2du =

∫ 1

0

(1− u2)2 du

=

∫ 1

0

1− 2u2 + u4 du = (t− 2

3
t3 +

1

5
t5)

∣∣∣1
0
=

8

15
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13. Prove that if f, g : I → R are square-integrable continuous functions over I1, then∣∣∣∣∫
I

f(x)g(x)dx

∣∣∣∣ ≤ (∫
I

f(x)2dx

) 1
2
(∫

I

g(x)2dx

) 1
2

This is known as the Cauchy–Schwarz inequality. (Hint: If at least one of the functions is
zero, then there is nothing to prove. Suppose both are non-zero. Evaluate

∫
I
(f(x)−λg(x))2dx

and choose λ ∈ R carefully.)

Solution: As mentioned above, we assume that both functions are non-zero. Then none
of the integrals on the right-hand side of the inequality are 0 because each integral is
the integral of a non-negative continuous function that is not identically 0: a theorem
guarantees that such an integral is strictly positive. Using the hint:

0 ≤
∫
I

(f(x)− λg(x))2dx =

∫
I

(f(x)2 − 2λf(x)g(x) + λ2g(x)2)dx (2)

=

∫
I

f(x)2dx− 2λ

∫
I

f(x)g(x)dx+ λ2

∫
I

g(x)2dx. (3)

Let

λ =

∫
I
f(x)g(x)dx∫
I
g(x)2dx

, (4)

which is well defined as the denominator is not 0, and insert this into (2), which gives

0 ≤
∫
I

f(x)2dx−
(∫

I
f(x)g(x)dx

)2∫
I
g(x)2dx

. (5)

Rearranging and taking the square root gives∣∣∣∣∫
I

f(x)g(x)dx

∣∣∣∣ ≤ (∫
I

f(x)2dx

) 1
2
(∫

I

g(x)2dx

) 1
2

(6)

as required.

Revision Exercises

Questions 14-17 are multiple choice questions. In each of the questions you should explain
why your choice is correct.

14. The equation x(ex − e−x)− ex = 0

(a) has no solution belonging to the interval [0,+∞[.

(b) has exactly one real solution.

(c) has no solution belonging to the interval ]−∞, 0[.

(d) has at least two real solutions.

Solution: (d) is correct. Let f(x) = x(ex − e−x) − ex. Then lim
x→+∞

f(x) = +∞,

lim
x→−∞

f(x) = +∞ and f(0) = −1 < 0. By the intermediate value theorem, there must

be at least two solutions to the equation.

1Meaning that f2 and g2 are integrable.
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15. Let the one-to-one function f : R → R be defined by f(x) = sinh(sinh(x)) and let a = f(1).
Then the derivative of the inverse function g = f−1 at a is

(a) g′(a) = 1
cosh(sinh(1)) .

(b) g′(a) = 1
cosh(sinh(a)) cosh(a) .

(c) g′(a) = 1
cosh(sinh(1)) cosh(1) .

(d) g′(a) = 1
cosh(sinh(a)) cosh(1) .

Solution: Using the inverse function theorem we have

g′(x) =
1

f ′(g(x))
(7)

and using the chain rule we have

f ′(x) = cosh(x) cosh(sinh(x)) (8)

and g(a) = 1 which gives

g′(x) =
1

cosh(1) cosh(sinh(1))
(9)

and thus (c) is correct.

16. The limit lim
x→0

e|x|−1−|x|
x2 is

(a) 0.

(b) 1.

(c) 1
2 .

(d) Does not exist.

Solution: Consider the function f(x) = ex−1−x
x2 . Applying L’Hôpital’s rule twice gives

lim
x→0

f(x) = lim
x→0

ex

2
=

1

2
(10)

Applying a similar argument on g(x) = f(−x) shows that lim
x→0

g(x) = 1
2 . In particular,

this implies that lim
x→0

e|x|−1−|x|
x2 = 1

2 and thus (c) is correct.

17. Let the function f : R → R be defined by f(x) = ee
x−1. The truncated expansion of order 2

of f around x = 0 is

(a) f(x) = 1 + x+ x2 + x2ϵ(x)

(b) f(x) = 2x+ x2 + x2ϵ(x)

(c) f(x) = 1 + x+ 1
2x

2 + x2ϵ(x)

(d) f(x) = 1 + x+ 2x2 + x2ϵ(x)
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where lim
x→0

ϵ(x) = 0.

Solution: (a) is correct. Note that f(0) = 1 and

f ′(x) = ee
x+x−1 ⇒ f ′(0) = 1

f ′′(x) = (ex + 1)ee
x+x−1 ⇒ f ′′(0) = 2

Hence,
f(x) = 1 + x+ x2 + x2ϵ(x). (11)

Questions 18-22 are true or false questions. If the statement is true, you should prove it. If it
is false, you should give a counter example.

18. For a < b in R, let a function f : [a, b] → R be continuous on [a, b] and twice differentiable on
]a, b[. If f(a) = f(b) = 0, then there exists c ∈]a, b[ such that f ′′(c) = 0.

Solution: False. Take f : [−1, 1] → R, f(x) = 1− x2.

19. Define f : R → R, f(x) =
∫ x

0
|t|dt. Then f ′(x) = x ∀x ∈ R.

Solution: False. By evaluating the integral we see that

f(x) =
1

2
sign(x)x2 (12)

and thus, f ′(x) = |x|, since f ′(x) = x for x ≥ 0 and f(x) = −x for x < 0.

20. Let f : I → R be differentiable over an open interval I ⊂ R. Then the derivative of f at the
point y ∈ I satisfies

f ′(y) = lim
x→0

f(y + x)− f(y)

x
.

Solution: True. This is the definition of the derivative of f at y.

21. Let f :]0, 1[→ R be a differentiable function on ]0, 1[. Then the function f ′ :]0, 1[ 7→ R is
differentiable on ]0, 1[.

Solution: False. Take the function defined in Question 19. f ′(x) = |x| is not differen-
tiable at 0.

22. A function f : R → R s.t. ∀ε > 0 and ∀x, y ∈ R with the following property

|x− y| ≤ 2ε ⇒ |f(x)− f(y)| ≤ ε

is continuous on R.
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Solution: True. Let x0 ∈ R. Let ε > 0 be given. Let δ = ε. Then, |x − x0| < δ = ε ⇒
|f(x)− f(x0)| ≤ ε

2 < ε. Hence, f is continuous.
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